Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Atherosclerosis is an inflammatory disease that may cause severe heart disease and stroke. Current pharmacotherapy for atherosclerosis shows limited benefits. In the progression of atherosclerosis, monocyte adhesions and inflammatory macrophages play vital roles. However, precise regulations of inflammatory immune microenvironments in pathological tissues remain challenging. Here, we report an atherosclerotic plaque-targeted selenopeptide nanomedicine for inhibiting atherosclerosis progression by reducing monocyte adhesions and inflammation of macrophages. The targeted nanomedicine has 2.2-fold enhancement in atherosclerotic lesion accumulation. The oxidation-responsibility of selenopeptide enables eliminations of reactive oxygen species and specific release of anti-inflammatory drugs, thereby reducing inflammation responses of macrophages. Notably, we find the oxidative metabolite of selenopeptide, octadecyl selenite, can bind to P-selectin in a high affinity with a dissociation constant of 1.5 μM. This in situ generated active seleno-species further inhibit monocyte adhesions for anti-inflammation in synergy. With local regulations of monocyte adhesions and inflammations, the selenopeptide nanomedicine achieves 2.6-fold improvement in atherosclerotic plaque inhibition compared with simvastatin in the atherosclerosis mouse model. Meanwhile, the selenopeptide nanomedicine also displays excellent biological safety in both mice and rhesus monkeys. This study provides a safe and effective platform for regulating inflammatory immune microenvironments for inflammatory diseases such as atherosclerosis.
Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533.
Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695.
Tombling, B. J.; Zhang, Y. H.; Huang, Y. H.; Craik, D. J.; Wang, C. K. The emerging landscape of peptide-based inhibitors of PCSK9. Atherosclerosis 2021, 330, 52–60.
Engelen, S. E.; Robinson, A. J. B.; Zurke, Y. X.; Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed. Nat. Rev. Cardiol. 2022, 19, 522–542.
Chen, W.; Schilperoort, M.; Cao, Y. H.; Shi, J. J.; Tabas, I.; Tao, W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 2022, 19, 228–249.
Wang, Q.; Jing, H. S.; Lin, J.; Wu, Z. H.; Tian, Y.; Gong, K.; Guo, Q. Q.; Yang, X. P.; Wang, L. T.; Li, Z. J. et al. Programmed prodrug breaking the feedback regulation of P-selectin in plaque inflammation for atherosclerotic therapy. Biomaterials 2022, 288, 121705.
Hu, Q. Q.; Fang, Z. Y.; Ge, J. B.; Li, H. Nanotechnology for cardiovascular diseases. Innovation 2022, 3, 100214.
Smith, B. R.; Edelman, E. R. Nanomedicines for cardiovascular disease. Nat. Cardiovasc. Res. 2023, 2, 351–367.
Gao, C.; Huang, Q. X.; Liu, C. H.; Kwong, C. H. T.; Yue, L. D.; Wan, J. B.; Lee, S. M. Y.; Wang, R. B. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 2020, 11, 2622.
Wu, G. H.; Zhang, J. F.; Zhao, Q. R.; Zhuang, W. R.; Ding, J. J.; Zhang, C.; Gao, H. J.; Pang, D. W.; Pu, K. Y.; Xie, H. Y. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew. Chem., Int. Ed. 2020, 59, 4068–4074.
Hu, R. Z.; Dai, C.; Dong, C. H.; Ding, L.; Huang, H.; Chen, Y.; Zhang, B. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano 2022, 16, 15959–15976.
Wu, G. H.; Mu, C. W.; Zhao, Q. R.; Lei, Y.; Cheng, R.; Nie, W. D.; Qu, J. M.; Dong, Y. P.; Yang, R. L.; Xie, H. Y. Thylakoid engineered M2 macrophage for sonodynamic effect promoted cell therapy of early atherosclerosis. Nano Res. 2024, 17, 2919–2928.
Guo, M. R.; He, Z. S.; Jin, Z. H.; Huang, L. J.; Yuan, J. M.; Qin, S. G.; Wang, X. C.; Cao, L. L.; Song, X. R. Oral nanoparticles containing naringenin suppress atherosclerotic progression by targeting delivery to plaque macrophages. Nano Res. 2023, 16, 925–937.
Gao, M. Z.; Tang, M. P.; Ho, W.; Teng, Y. L.; Chen, Q. J.; Bu, L.; Xu, X. Y.; Zhang, X. Q. Modulating plaque inflammation via targeted mRNA nanoparticles for the treatment of atherosclerosis. ACS Nano 2023, 17, 17721–17739.
Flores, A. M.; Hosseini-Nassab, N.; Jarr, K. U.; Ye, J. Q.; Zhu, X. J.; Wirka, R.; Koh, A. L.; Tsantilas, P.; Wang, Y.; Nanda, V. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 2020, 15, 154–161.
Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis-from experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610.
Rayman, M. P. Selenium and human health. Lancet 2012, 379, 1256–1268.
Reich, H. J.; Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 2016, 11, 821–841.
Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.
Shi, D. L.; Liu, W. W.; Gao, Y.; Li, X. M.; Huang, Y. Y.; Li, X. K.; James, T. D.; Guo, Y.; Li, J. Photoactivatable senolysis with single-cell resolution delays aging. Nat. Aging 2023, 3, 297–312.
Sun, J. M.; Du, Z. Z.; Liu, Y. H.; Ai, W.; Wang, K.; Wang, T.; Du, H. F.; Liu, L.; Huang, W. State-of-the-art and future challenges in high energy lithium-selenium batteries. Adv. Mater. 2021, 33, 2003845.
Winther, K. H.; Rayman, M. P.; Bonnema, S. J.; Hegedus, L. Selenium in thyroid disorders - essential knowledge for clinicians. Nat. Rev. Endocrinol. 2020, 16, 165–176.
Li, T. Y.; Xu, H. P. Selenium-containing nanomaterials for cancer treatment. Cell Rep. Phys. Sci. 2020, 1, 100111.
Huang, Y. Y.; Su, E. Z.; Ren, J. S.; Qu, X. G. The recent biological applications of selenium-based nanomaterials. Nano Today 2021, 38, 101205.
Li, T. Y.; Pan, S. J.; Gao, S. Q.; Xiang, W. T.; Sun, C. X.; Cao, W.; Xu, H. P. Diselenide-pemetrexed assemblies for combined cancer immuno-, radio-, and chemotherapies. Angew. Chem., Int. Ed. 2020, 59, 2700–2704.
Zhang, L.; Sun, C. X.; Tan, Y. Z.; Xu, H. P. Selenium-sulfur-doped carbon dots with thioredoxin reductase activity. CCS Chem. 2022, 4, 2239–2248.
Zhu, L. W.; Chan, L.; Wang, J. P.; Chen, M. K.; Cai, F.; Tian, Y.; Ma, L.; Chen, T. F. Selenium-engineered bottom-up-synthesized lanthanide coordination nanoframeworks as efficiency X-ray-responsive radiosensitizers. Nano Res. 2023, 16, 5169–5175.
Chen, M. K.; Cao, W. Q.; Wang, J. P.; Cai, F.; Zhu, L. W.; Ma, L.; Chen, T. F. Selenium atom-polarization effect determines TrxR-specific recognition of metallodrugs. J. Am. Chem. Soc. 2022, 144, 20825–20833.
Yang, H.; Liu, C.; Wu, Y. J.; Yuan, M.; Huang, J. R.; Xia, Y. H.; Ling, Q. J.; Hoffmann, P. R.; Huang, Z.; Chen, T. F. Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. Nano Today 2022, 42, 101351.
Yin, M. D.; Lin, J. F.; Yang, M. Y.; Li, C.; Wu, P. Y.; Zou, J. J.; Jiang, Y. J.; Shao, J. W. Platelet membrane-cloaked selenium/ginsenoside Rb1 nanosystem as biomimetic reactor for atherosclerosis therapy. Colloids Surf. B: Biointerfaces 2022, 214, 112464.
Xu, J. Q.; Xu, J. C.; Shi, T. F.; Zhang, Y. L.; Chen, F. M.; Yang, C.; Guo, X. J.; Liu, G. N.; Shao, D.; Leong, K. W. et al. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating redox balance, immune responses, and the gut microbiome. Adv. Mater. 2023, 35, 2207890.
Xiong, Z. S.; Lin, H.; Li, H.; Zou, B. H.; Xie, B.; Yu, Y. Z.; He, L. Z.; Chen, T. F. Chiral selenium nanotherapeutics regulates selenoproteins to attenuate glucocorticoid-induced osteoporosis. Adv. Funct. Mater. 2023, 33, 2212970.
Ouyang, J.; Deng, B.; Zou, B. H.; Li, Y. J.; Bu, Q. Y.; Tian, Y.; Chen, M. K.; Chen, W.; Kong, N.; Chen, T. F. et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota. J. Am. Chem. Soc. 2023, 145, 12193–12205.
Zhang, H. J.; Gao, L. Y.; Sui, M. L.; Wang, J. J.; Wang, Y. P.; Xuan, X. Y.; Zhang, Z. Z.; Zhu, L.; Hou, L. The “two-pronged” nanosystem to precisely improve lipid metabolism and inflammatory microenvironment for atherosclerotic plaque stabilization. Nano Res. 2023, 16, 2706–2718.
Xu, J. Q.; Chu, T. J.; Yu, T. T.; Li, N. S.; Wang, C. L.; Li, C.; Zhang, Y. L.; Meng, H.; Nie, G. J. Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ros scavenging to relieve colitis. ACS Nano 2022, 16, 13037–13048.
Xie, B.; Zeng, D. L.; Yang, M. J.; Tang, Z. Y.; He, L. Z.; Chen, T. F. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano 2023, 17, 14053–14068.
Chagri, S.; Ng, D. Y. W.; Weil, T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat. Rev. Chem. 2022, 6, 320–338.
Kim, J.; Lee, S.; Kim, Y.; Choi, M.; Lee, I.; Kim, E.; Yoon, C. G.; Pu, K. Y.; Kang, H.; Kim, J. S. In situ self-assembly for cancer therapy and imaging. Nat. Rev. Mater. 2023, 8, 710–725.
Zhang, X. Y.; Wang, J. X.; Zhang, Y.; Yang, Z. M.; Gao, J.; Gu, Z. Synthesizing biomaterials in living organisms. Chem. Soc. Rev. 2023, 52, 8126–8164.
Guo, L. M.; Yang, J. J.; Wang, H.; Yi, Y. Multistage self-assembled nanomaterials for cancer immunotherapy. Molecules 2023, 28, 7750.
Wei, Z. Y.; Yi, Y.; Luo, Z.; Gong, X. Y.; Jiang, Y. X.; Hou, D. Y.; Zhang, L.; Liu, Z. M.; Wang, M. D.; Wang, J. et al. Selenopeptide nanomedicine activates natural killer cells for enhanced tumor chemoimmunotherapy. Adv. Mater. 2022, 34, 2108167.
Li, Y. B.; Han, J. Y.; Jiang, W.; Wang, J. Selenium inhibits high glucose-induced cyclooxygenase-2 and P-selectin expression in vascular endothelial cells. Mol. Biol. Rep. 2011, 38, 2301–2306.
Wang, P. F.; Gong, Q. J.; Hu, J. B.; Li, X.; Zhang, X. J. Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: Applications in the ROS-related diseases. J. Med. Chem. 2021, 64, 298–325.
He, J. H.; Zhang, W. L.; Zhou, X. J.; Xu, F. F.; Zou, J. H.; Zhang, Q. Q.; Zhao, Y.; He, H. L.; Yang, H.; Liu, J. P. Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioact. Mater. 2023, 19, 115–126.
Ali, S. T.; Karamat, S.; Kóňa, J.; Fabian, W. M. F. Theoretical prediction of p Ka values of seleninic, selenenic, sulfinic, and carboxylic acids by quantum-chemical methods. J. Phys. Chem. A 2010, 114, 12470–12478.
Madabeni, A.; Zucchelli, S.; Nogara, P. A.; Rocha, J. B. T.; Orian, L. In the chalcogenoxide elimination panorama: Systematic insight into a key reaction. J. Org. Chem. 2022, 87, 11766–11775.
Liu, C.; Shen, M. C.; Tan, W. L. W.; Chen, I. Y.; Liu, Y.; Yu, X.; Yang, H. X.; Zhang, A.; Liu, Y. X.; Zhao, M. T. et al. Statins improve endothelial function via suppression of epigenetic-driven endmt. Nat. Cardiovasc. Res. 2023, 2, 467–485.
Smith, B. A. H.; Bertozzi, C. R. The clinical impact of glycobiology: Targeting selectins, siglecs and mammalian glycans. Nat. Rev. Drug Discov. 2021, 20, 217–243.
Hong, Y.; Hu, Y.; Sun, Y. A.; Shi, J. Q.; Xu, J. High-fat diet caused renal damage in ApoE-/- mice via the activation of RAGE-mediated inflammation. Toxicol. Res. 2021, 10, 1171–1176.