AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selenopeptide nanomedicine ameliorates atherosclerosis by reducing monocyte adhesions and inflammations

Zhen Luo1,2,§Yuxing Jiang1,3,§Zimo Liu1,4,§Lamei Guo1,5,§Li Zhang1,5Hongtao Rong3Zhongyu Duan2Hongwen Liang6Aili Zhang7Lei Wang1,4Yu Yi1,4( )Hao Wang1,4( )
CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
Tianjin Medical University General Hospital, Tianjin 300052, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Zhen Luo, Yuxing Jiang, Zimo Liu, and Lamei Guo contributed equally to this work.

Show Author Information

Graphical Abstract

An atherosclerotic plaque-targeted selenopeptide nanomedicine is developed for atherosclerosis management by reducing monocyte adhesions and macrophage inflammations. Local oxidation of the selenopeptide not only reduces oxidation stress and triggers drug release, but also generates amphiphilic seleno-metabolites in situ that form micelles for P-selectin blockage to inhibit monocyte adhesions and inflammations in synergy.

Abstract

Atherosclerosis is an inflammatory disease that may cause severe heart disease and stroke. Current pharmacotherapy for atherosclerosis shows limited benefits. In the progression of atherosclerosis, monocyte adhesions and inflammatory macrophages play vital roles. However, precise regulations of inflammatory immune microenvironments in pathological tissues remain challenging. Here, we report an atherosclerotic plaque-targeted selenopeptide nanomedicine for inhibiting atherosclerosis progression by reducing monocyte adhesions and inflammation of macrophages. The targeted nanomedicine has 2.2-fold enhancement in atherosclerotic lesion accumulation. The oxidation-responsibility of selenopeptide enables eliminations of reactive oxygen species and specific release of anti-inflammatory drugs, thereby reducing inflammation responses of macrophages. Notably, we find the oxidative metabolite of selenopeptide, octadecyl selenite, can bind to P-selectin in a high affinity with a dissociation constant of 1.5 μM. This in situ generated active seleno-species further inhibit monocyte adhesions for anti-inflammation in synergy. With local regulations of monocyte adhesions and inflammations, the selenopeptide nanomedicine achieves 2.6-fold improvement in atherosclerotic plaque inhibition compared with simvastatin in the atherosclerosis mouse model. Meanwhile, the selenopeptide nanomedicine also displays excellent biological safety in both mice and rhesus monkeys. This study provides a safe and effective platform for regulating inflammatory immune microenvironments for inflammatory diseases such as atherosclerosis.

Electronic Supplementary Material

Download File(s)
6547_ESM.pdf (2.8 MB)

References

[1]

Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533.

[2]

Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695.

[3]

Tombling, B. J.; Zhang, Y. H.; Huang, Y. H.; Craik, D. J.; Wang, C. K. The emerging landscape of peptide-based inhibitors of PCSK9. Atherosclerosis 2021, 330, 52–60.

[4]

Engelen, S. E.; Robinson, A. J. B.; Zurke, Y. X.; Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed. Nat. Rev. Cardiol. 2022, 19, 522–542.

[5]

Chen, W.; Schilperoort, M.; Cao, Y. H.; Shi, J. J.; Tabas, I.; Tao, W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 2022, 19, 228–249.

[6]

Wang, Q.; Jing, H. S.; Lin, J.; Wu, Z. H.; Tian, Y.; Gong, K.; Guo, Q. Q.; Yang, X. P.; Wang, L. T.; Li, Z. J. et al. Programmed prodrug breaking the feedback regulation of P-selectin in plaque inflammation for atherosclerotic therapy. Biomaterials 2022, 288, 121705.

[7]

Hu, Q. Q.; Fang, Z. Y.; Ge, J. B.; Li, H. Nanotechnology for cardiovascular diseases. Innovation 2022, 3, 100214.

[8]

Smith, B. R.; Edelman, E. R. Nanomedicines for cardiovascular disease. Nat. Cardiovasc. Res. 2023, 2, 351–367.

[9]

Gao, C.; Huang, Q. X.; Liu, C. H.; Kwong, C. H. T.; Yue, L. D.; Wan, J. B.; Lee, S. M. Y.; Wang, R. B. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 2020, 11, 2622.

[10]

Wu, G. H.; Zhang, J. F.; Zhao, Q. R.; Zhuang, W. R.; Ding, J. J.; Zhang, C.; Gao, H. J.; Pang, D. W.; Pu, K. Y.; Xie, H. Y. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew. Chem., Int. Ed. 2020, 59, 4068–4074.

[11]

Hu, R. Z.; Dai, C.; Dong, C. H.; Ding, L.; Huang, H.; Chen, Y.; Zhang, B. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano 2022, 16, 15959–15976.

[12]

Wu, G. H.; Mu, C. W.; Zhao, Q. R.; Lei, Y.; Cheng, R.; Nie, W. D.; Qu, J. M.; Dong, Y. P.; Yang, R. L.; Xie, H. Y. Thylakoid engineered M2 macrophage for sonodynamic effect promoted cell therapy of early atherosclerosis. Nano Res. 2024, 17, 2919–2928.

[13]

Guo, M. R.; He, Z. S.; Jin, Z. H.; Huang, L. J.; Yuan, J. M.; Qin, S. G.; Wang, X. C.; Cao, L. L.; Song, X. R. Oral nanoparticles containing naringenin suppress atherosclerotic progression by targeting delivery to plaque macrophages. Nano Res. 2023, 16, 925–937.

[14]

Gao, M. Z.; Tang, M. P.; Ho, W.; Teng, Y. L.; Chen, Q. J.; Bu, L.; Xu, X. Y.; Zhang, X. Q. Modulating plaque inflammation via targeted mRNA nanoparticles for the treatment of atherosclerosis. ACS Nano 2023, 17, 17721–17739.

[15]

Flores, A. M.; Hosseini-Nassab, N.; Jarr, K. U.; Ye, J. Q.; Zhu, X. J.; Wirka, R.; Koh, A. L.; Tsantilas, P.; Wang, Y.; Nanda, V. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 2020, 15, 154–161.

[16]

Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis-from experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610.

[17]

Rayman, M. P. Selenium and human health. Lancet 2012, 379, 1256–1268.

[18]

Reich, H. J.; Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 2016, 11, 821–841.

[19]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[20]
He, C. W.; Liu, C.; Pan, S. J.; Tan, Y. Z.; Guan, J.; Xu, H. P. Polyurethane with β-selenocarbonyl structure enabling the combination of plastic degradation and waste upcycling. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202317558.
[21]

Shi, D. L.; Liu, W. W.; Gao, Y.; Li, X. M.; Huang, Y. Y.; Li, X. K.; James, T. D.; Guo, Y.; Li, J. Photoactivatable senolysis with single-cell resolution delays aging. Nat. Aging 2023, 3, 297–312.

[22]

Sun, J. M.; Du, Z. Z.; Liu, Y. H.; Ai, W.; Wang, K.; Wang, T.; Du, H. F.; Liu, L.; Huang, W. State-of-the-art and future challenges in high energy lithium-selenium batteries. Adv. Mater. 2021, 33, 2003845.

[23]

Winther, K. H.; Rayman, M. P.; Bonnema, S. J.; Hegedus, L. Selenium in thyroid disorders - essential knowledge for clinicians. Nat. Rev. Endocrinol. 2020, 16, 165–176.

[24]

Li, T. Y.; Xu, H. P. Selenium-containing nanomaterials for cancer treatment. Cell Rep. Phys. Sci. 2020, 1, 100111.

[25]

Huang, Y. Y.; Su, E. Z.; Ren, J. S.; Qu, X. G. The recent biological applications of selenium-based nanomaterials. Nano Today 2021, 38, 101205.

[26]

Li, T. Y.; Pan, S. J.; Gao, S. Q.; Xiang, W. T.; Sun, C. X.; Cao, W.; Xu, H. P. Diselenide-pemetrexed assemblies for combined cancer immuno-, radio-, and chemotherapies. Angew. Chem., Int. Ed. 2020, 59, 2700–2704.

[27]

Zhang, L.; Sun, C. X.; Tan, Y. Z.; Xu, H. P. Selenium-sulfur-doped carbon dots with thioredoxin reductase activity. CCS Chem. 2022, 4, 2239–2248.

[28]

Zhu, L. W.; Chan, L.; Wang, J. P.; Chen, M. K.; Cai, F.; Tian, Y.; Ma, L.; Chen, T. F. Selenium-engineered bottom-up-synthesized lanthanide coordination nanoframeworks as efficiency X-ray-responsive radiosensitizers. Nano Res. 2023, 16, 5169–5175.

[29]

Chen, M. K.; Cao, W. Q.; Wang, J. P.; Cai, F.; Zhu, L. W.; Ma, L.; Chen, T. F. Selenium atom-polarization effect determines TrxR-specific recognition of metallodrugs. J. Am. Chem. Soc. 2022, 144, 20825–20833.

[30]
Xianyu, B. R.; Pan, S. J.; Gao, S. Q.; Xu, H. P.; Li, T. Y. Selenium-containing nanocomplexes achieve dual immune checkpoint blockade for NK cell reinvigoration. Small, in press, DOI: 10.1002/smll.202306225.
[31]

Yang, H.; Liu, C.; Wu, Y. J.; Yuan, M.; Huang, J. R.; Xia, Y. H.; Ling, Q. J.; Hoffmann, P. R.; Huang, Z.; Chen, T. F. Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. Nano Today 2022, 42, 101351.

[32]

Yin, M. D.; Lin, J. F.; Yang, M. Y.; Li, C.; Wu, P. Y.; Zou, J. J.; Jiang, Y. J.; Shao, J. W. Platelet membrane-cloaked selenium/ginsenoside Rb1 nanosystem as biomimetic reactor for atherosclerosis therapy. Colloids Surf. B: Biointerfaces 2022, 214, 112464.

[33]

Xu, J. Q.; Xu, J. C.; Shi, T. F.; Zhang, Y. L.; Chen, F. M.; Yang, C.; Guo, X. J.; Liu, G. N.; Shao, D.; Leong, K. W. et al. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating redox balance, immune responses, and the gut microbiome. Adv. Mater. 2023, 35, 2207890.

[34]

Xiong, Z. S.; Lin, H.; Li, H.; Zou, B. H.; Xie, B.; Yu, Y. Z.; He, L. Z.; Chen, T. F. Chiral selenium nanotherapeutics regulates selenoproteins to attenuate glucocorticoid-induced osteoporosis. Adv. Funct. Mater. 2023, 33, 2212970.

[35]

Ouyang, J.; Deng, B.; Zou, B. H.; Li, Y. J.; Bu, Q. Y.; Tian, Y.; Chen, M. K.; Chen, W.; Kong, N.; Chen, T. F. et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota. J. Am. Chem. Soc. 2023, 145, 12193–12205.

[36]

Zhang, H. J.; Gao, L. Y.; Sui, M. L.; Wang, J. J.; Wang, Y. P.; Xuan, X. Y.; Zhang, Z. Z.; Zhu, L.; Hou, L. The “two-pronged” nanosystem to precisely improve lipid metabolism and inflammatory microenvironment for atherosclerotic plaque stabilization. Nano Res. 2023, 16, 2706–2718.

[37]

Xu, J. Q.; Chu, T. J.; Yu, T. T.; Li, N. S.; Wang, C. L.; Li, C.; Zhang, Y. L.; Meng, H.; Nie, G. J. Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ros scavenging to relieve colitis. ACS Nano 2022, 16, 13037–13048.

[38]

Xie, B.; Zeng, D. L.; Yang, M. J.; Tang, Z. Y.; He, L. Z.; Chen, T. F. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano 2023, 17, 14053–14068.

[39]

Chagri, S.; Ng, D. Y. W.; Weil, T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat. Rev. Chem. 2022, 6, 320–338.

[40]

Kim, J.; Lee, S.; Kim, Y.; Choi, M.; Lee, I.; Kim, E.; Yoon, C. G.; Pu, K. Y.; Kang, H.; Kim, J. S. In situ self-assembly for cancer therapy and imaging. Nat. Rev. Mater. 2023, 8, 710–725.

[41]
Yi, Y.; An, H. W.; Wang, H. Intelligent biomaterialomics: Molecular design, manufacturing, and biomedical applications. Adv. Mater., in press, DOI: 10.1002/adma.202305099.
[42]
Mamuti, M.; Zheng, R.; An, H. W.; Wang, H. In vivo self-assembled nanomedicine. Nano Today 2021 , 36, 101036.
[43]

Zhang, X. Y.; Wang, J. X.; Zhang, Y.; Yang, Z. M.; Gao, J.; Gu, Z. Synthesizing biomaterials in living organisms. Chem. Soc. Rev. 2023, 52, 8126–8164.

[44]

Guo, L. M.; Yang, J. J.; Wang, H.; Yi, Y. Multistage self-assembled nanomaterials for cancer immunotherapy. Molecules 2023, 28, 7750.

[45]

Wei, Z. Y.; Yi, Y.; Luo, Z.; Gong, X. Y.; Jiang, Y. X.; Hou, D. Y.; Zhang, L.; Liu, Z. M.; Wang, M. D.; Wang, J. et al. Selenopeptide nanomedicine activates natural killer cells for enhanced tumor chemoimmunotherapy. Adv. Mater. 2022, 34, 2108167.

[46]

Li, Y. B.; Han, J. Y.; Jiang, W.; Wang, J. Selenium inhibits high glucose-induced cyclooxygenase-2 and P-selectin expression in vascular endothelial cells. Mol. Biol. Rep. 2011, 38, 2301–2306.

[47]

Wang, P. F.; Gong, Q. J.; Hu, J. B.; Li, X.; Zhang, X. J. Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: Applications in the ROS-related diseases. J. Med. Chem. 2021, 64, 298–325.

[48]

He, J. H.; Zhang, W. L.; Zhou, X. J.; Xu, F. F.; Zou, J. H.; Zhang, Q. Q.; Zhao, Y.; He, H. L.; Yang, H.; Liu, J. P. Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioact. Mater. 2023, 19, 115–126.

[49]

Ali, S. T.; Karamat, S.; Kóňa, J.; Fabian, W. M. F. Theoretical prediction of p Ka values of seleninic, selenenic, sulfinic, and carboxylic acids by quantum-chemical methods. J. Phys. Chem. A 2010, 114, 12470–12478.

[50]

Madabeni, A.; Zucchelli, S.; Nogara, P. A.; Rocha, J. B. T.; Orian, L. In the chalcogenoxide elimination panorama: Systematic insight into a key reaction. J. Org. Chem. 2022, 87, 11766–11775.

[51]

Liu, C.; Shen, M. C.; Tan, W. L. W.; Chen, I. Y.; Liu, Y.; Yu, X.; Yang, H. X.; Zhang, A.; Liu, Y. X.; Zhao, M. T. et al. Statins improve endothelial function via suppression of epigenetic-driven endmt. Nat. Cardiovasc. Res. 2023, 2, 467–485.

[52]

Smith, B. A. H.; Bertozzi, C. R. The clinical impact of glycobiology: Targeting selectins, siglecs and mammalian glycans. Nat. Rev. Drug Discov. 2021, 20, 217–243.

[53]

Hong, Y.; Hu, Y.; Sun, Y. A.; Shi, J. Q.; Xu, J. High-fat diet caused renal damage in ApoE-/- mice via the activation of RAGE-mediated inflammation. Toxicol. Res. 2021, 10, 1171–1176.

[54]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16, Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
Nano Research
Pages 6332-6341
Cite this article:
Luo Z, Jiang Y, Liu Z, et al. Selenopeptide nanomedicine ameliorates atherosclerosis by reducing monocyte adhesions and inflammations. Nano Research, 2024, 17(7): 6332-6341. https://doi.org/10.1007/s12274-024-6547-z
Topics:

675

Views

3

Crossref

1

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 11 January 2024
Revised: 03 February 2024
Accepted: 03 February 2024
Published: 13 March 2024
© Tsinghua University Press 2024
Return