AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Catalytic effects of V- and O-species derived from PrF3/V2C for efficient hydrogen storage in MgH2

Zhenluo Yuan1,2Yuhang Wang1Xiuxiu Zhang3Shuyan Guan1Xiaojiao Wang1Liqiang Ji4Qiuming Peng5Shumin Han5Yanping Fan1( )Baozhong Liu1( )
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Henan Famous Diamond Co., Ltd., Mengzhou 454763, China
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Show Author Information

Graphical Abstract

The introduction of as-prepared composite of V2C MXene-anchored PrF3 nanoparticles (PrF3/V2C) dramatically improves the reversibility and cycling stability of hydrogen storage in MgH2.

Abstract

Magnesium hydride (MgH2) is considered as an ideal hydrogen storage material with excellent hydrogen capacity, but the slow kinetics impedes its application. Herein, an efficient additive of V2C MXene-anchored PrF3 nanoparticles (PrF3/V2C) was synthesized, which presents excellent catalytic effect in improving the reversibility and stability of hydrogen storage in MgH2. The initial dehydrogenation temperature of the 5 wt.% PrF3/V2C-containing MgH2 (182 °C) is 105 °C lower than that of pure MgH2, and 6.5 wt.% hydrogen is rapidly released from 5 wt.% PrF3/V2C-added MgH2 sample in 6 min at 240 °C. In addition, 5 wt.% PrF3/V2C-containing MgH2 sample possesses outstanding reversible hydrogen storage capability of 6.5 wt.% after 10 cycles of dehydrogenation and hydrogenation. Microstructure analysis shows that the introduction of Pr improves the stability of V-species (V0 and V2+) and O-species (lattice oxygen (OL) and vacancy oxygen (OV)) formed during ball milling, promotes the interaction between V-species and O-species, and enhances their reversibility, which contributes to the significant improvement in re/dehydrogenation reversibility and cycling stability of MgH2. This study provides effective ideas and strategies for the purpose of designing and fabricating high-efficient catalysts for solid-state hydrogen storage materials.

Electronic Supplementary Material

Download File(s)
6550_ESM.pdf (3.2 MB)

References

[1]

Chen, K.; Ouyang, L. Z.; Zhong, H.; Liu, J. W.; Wang, H.; Shao, H. Y.; Zhang, Y.; Zhu, M. Converting H+ from coordinated water into H enables super facile synthesis of LiBH4. Green Chem. 2019, 21, 4380–4387.

[2]

Wang, Y. R.; Chen, X. W.; Zhang, H. Y.; Xia, G. L.; Sun, D. L.; Yu, X. B. Heterostructures built in metal hydrides for advanced hydrogen storage reversibility. Adv. Mater. 2020, 32, 2002647.

[3]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[4]
Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202314382.
[5]

Fan, Y. P.; Chen, D. D.; Liu, X. Y.; Fan, G. X.; Liu, B. Z. Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene. Int. J. Hydrogen Energy 2019, 44, 29297–29303.

[6]

Zhang, X.; Liu, Y. F.; Wang, K.; Gao, M. X.; Pan, H. G. Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation. Nano Res. 2015, 8, 533–545.

[7]

Zhang, H. Y.; Xia, G. L.; Zhang, J.; Sun, D. L.; Guo, Z. P.; Yu, X. B. Graphene-tailored thermodynamics and kinetics to fabricate metal borohydride nanoparticles with high purity and enhanced reversibility. Adv. Energy Mater. 2018, 8, 1702975.

[8]

Boateng, E.; Chen, A. C. Recent advances in nanomaterial-based solid-state hydrogen storage. Mater. Today Adv. 2020, 6, 100022.

[9]

Rusman, N. A. A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126.

[10]

Kammerer, J. A.; Duan, X. Y.; Neubrech, F.; Schröder, R. R.; Liu, N.; Pfannmöller, M. Stabilizing γ-MgH2 at nanotwins in mechanically constrained nanoparticles. Adv. Mater. 2021, 33, 2008259.

[11]

Wei, M. X.; Liu, Y. J.; Xing, X. F.; Zhang, Z.; Liu, T. (TiVZrNb)83Cr17 high-entropy alloy as catalyst for hydrogen storage in MgH2. Chem. Eng. J. 2023, 476, 146639.

[12]

Zhang, L. C.; Wang, K.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res. 2021, 14, 148–156.

[13]

Peng, C.; Zhang, Q. A. YC x F y nanosheets-supported Ni nanoparticles as a high-efficient catalyst for hydrogen desorption of MgH2. Nano Res. 2023, 16, 10938–10945

[14]

Guo, F. H.; Zhang, T. B.; Shi, L. M.; Song, L. Hydrogen absorption/desorption cycling performance of Mg-based alloys with in- situ formed Mg2Ni and LaH x ( x = 2, 3) nanocrystallines. J. Magnes. Alloys 2023, 11, 1180–1192.

[15]

Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Huang, Z. G.; Lu, Y. H.; Gao, M. X.; Pan, H. G. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 2021, 14, 2302–2313.

[16]

Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020, 13, 2063–2071.

[17]

Fu, H. F.; Hu, J.; Lu, Y. F.; Li, X. M.; Chen, Y. A.; Pan, F. S. Synergistic effect of a facilely synthesized MnV2O6 catalyst on improving the low-temperature kinetic properties of MgH2. ACS Appl. Mater. Interfaces 2022, 14, 33161–33172.

[18]

Kong, Q. Q.; Zhang, H. H.; Yuan, Z. L.; Liu, J. M.; Li, L. X.; Fan, Y. P.; Fan, G. X.; Liu, B. Z. Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2. ACS Sustain. Chem. Eng. 2020, 8, 4755–4763.

[19]

Soni, P. K.; Bhatnagar, A.; Shaz, M. A.; Srivastava, O. N. Effect of graphene templated fluorides of Ce and La on the de/rehydrogenation behavior of MgH2. Int. J. Hydrogen Energy 2017, 42, 20026–20035.

[20]

Wang, K.; Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Gao, M. X.; Pan, H. G. Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chem. Eng. J. 2021, 406, 126831.

[21]

Lillo-Ródenas, M. A.; Guo, Z. X.; Aguey-Zinsou, K. F.; Cazorla-Amorós, D.; Linares-Solano, A. Effects of different carbon materials on MgH2 decomposition. Carbon 2008, 46, 126–137.

[22]

Pang, Y. P.; Wang, Y. F.; Yang, J. H.; Zheng, S. Y. Engineering dual-functional VB2 nanoparticles in MgH2 for highly efficient hydrogen storage. Compos. Commun. 2021, 26, 100781.

[23]

Da Conceição, M. O. T.; Brum, M. C.; Dos Santos, D. S. The effect of V, VCl3 and VC catalysts on the MgH2 hydrogen sorption properties. J. Alloys Compd. 2014, 586, S101–S104.

[24]

Wang, Z. Y.; Ren, Z. H.; Jian, N.; Gao, M. X.; Hu, J. J.; Du, F.; Pan, H. G.; Liu, Y. F. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J. Mater. Chem. A 2018, 6, 16177–16185.

[25]

Tian, G. B.; Wu, F. Y.; Zhang, H. Y.; Wei, J.; Zhao, H.; Zhang, L. T. Boosting the hydrogen storage performance of MgH2 by vanadium based complex oxides. J. Phys. Chem. Solids 2023, 174, 111187.

[26]

Meng, Y.; Zhang, J.; Ju, S. L.; Yang, Y. X.; Li, Z. L.; Fang, F.; Sun, D. L.; Xia, G. L.; Pan, H. G.; Yu, X. B. Understanding and unlocking the role of V in boosting the reversible hydrogen storage performance of MgH2. J. Mater. Chem. A 2023, 11, 9762–9771.

[27]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[28]

VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135–11144.

[29]

Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.

[30]

Liu, Y. F.; Du, H. F.; Zhang, X.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Commun. 2016, 52, 705–708.

[31]

Huang, T. P.; Huang, X.; Hu, C. Z.; Wang, J.; Liu, H. B.; Xu, H.; Sun, F. Z.; Ma, Z. W.; Zou, J. X.; Ding, W. J. MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2. Chem. Eng. J. 2021, 421, 127851.

[32]

Lu, C. L.; Liu, H. Z.; Xu, L.; Luo, H.; He, S. X.; Duan, X. Q.; Huang, X. T.; Wang, X. H.; Lan, Z. Q.; Guo, J. Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride. J. Magnes. Alloys 2022, 10, 1051–1065.

[33]

Fan, X. L.; Xiao, X. Z.; Chen, L. X.; Zhang, L. T.; Shao, J.; Li, S. Q.; Ge, H. W.; Wang, Q. D. Significantly improved hydrogen storage properties of NaAlH4 catalyzed by Ce-based nanoparticles. J. Mater. Chem. A 2013, 1, 9752–9759.

[34]

Liang, L.; Zhao, S. L.; Wang, C. L.; Yin, D. M.; Wang, S. H.; Wang, Q. S.; Liang, F.; Li, S. L.; Wang, L. M.; Cheng, Y. Heterojunction synergistic catalysis of MXene-supported PrF3 nanosheets for the efficient hydrogen storage of AlH3. Nano Res. 2023, 16, 9546–9552.

[35]

Yuan, Z. L.; Zhang, D. F.; Fan, G. X.; Chen, Y. M.; Fan, Y. P.; Liu, B. Z. Synergistic effect of CeF3 nanoparticles supported on Ti3C2 MXene for catalyzing hydrogen storage of NaAlH4. ACS Appl. Energy Mater. 2021, 4, 2820–2827.

[36]

Wang, Y. H.; Fan, G. X.; Zhang, D. F.; Fan, Y. P.; Liu, B. Z. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2. J. Alloys Compd. 2022, 914, 165291.

[37]

Wu, M.; Wang, B. X.; Hu, Q. K.; Wang, L. B.; Zhou, A. G. The synthesis process and thermal stability of V2C MXene. Materials 2018, 11, 2112.

[38]

Zhang, Y. J.; Jiang, Y. D.; Duan, Z. H.; Huang, Q.; Wu, Y. W.; Liu, B. H.; Zhao, Q. N.; Wang, S.; Yuan, Z.; Tai, H. L. Highly sensitive and selective NO2 sensor of alkalized V2CT x MXene driven by interlayer swelling. Sens. Actuators B: Chem. 2021, 344, 130150.

[39]

Lan, L. L.; Fan, X. C.; Yu, S. B.; Gao, J.; Zhao, C. Y.; Hao, Q.; Qiu, T. Flexible two-dimensional vanadium carbide MXene-based membranes with ultra-rapid molecular enrichment for surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2022, 14, 40427–40436.

[40]

Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019, 4, 1603–1611.

[41]

Krishnan, R.; Swart, H. C.; Thirumalai, J.; Kumar, P. Depth profiling and photometric characteristics of Pr3+ doped BaMoO4 thin phosphor films grown using (266 nm Nd-YAG laser) pulsed laser deposition. Appl. Surf. Sci. 2019, 488, 783–790.

[42]

Corradini, P. G.; Antolini, E.; Perez, J. Structural and electrochemical characterization of carbon supported Pt–Pr catalysts for direct ethanol fuel cells prepared using a modified formic acid method in a CO atmosphere. Phys. Chem. Chem. Phys. 2013, 15, 11730–11739.

[43]

Cai, X. L.; Zhong, L. S.; Xu, Y. H.; Lu, Z. X.; Li, J. L.; Zhu, J. L.; Ding, Y. C.; Yan, H. H. Microstructural characterization of a V2C and V8C7 ceramic-reinforced Fe substrate surface compound layer by EBSD and TEM. J. Alloys Compd. 2018, 747, 8–20.

[44]

Wang, X. W.; Zhang, D. Z.; Zhang, H. B.; Gong, L. K.; Yang, Y.; Zhao, W. H.; Yu, S. J.; Yin, Y. D.; Sun, D. F. In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic–triboelectric hybrid generator. Nano Energy 2021, 88, 106242

[45]

Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem., Int. Ed. 2018, 57, 2248–2252.

[46]

Zhang, H. H.; Kong, Q. Q.; Hu, S.; Zhang, D. F.; Chen, H. P.; Xu, C. C.; Li, B. J.; Fan, Y. P.; Liu, B. Z. Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage. ACS Sustain. Chem. Eng. 2022, 10, 363–371.

Nano Research
Pages 7117-7125
Cite this article:
Yuan Z, Wang Y, Zhang X, et al. Catalytic effects of V- and O-species derived from PrF3/V2C for efficient hydrogen storage in MgH2. Nano Research, 2024, 17(8): 7117-7125. https://doi.org/10.1007/s12274-024-6550-4
Topics:

769

Views

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 January 2024
Revised: 03 February 2024
Accepted: 04 February 2024
Published: 05 June 2024
© Tsinghua University Press 2024
Return