Magnesium hydride (MgH2) is considered as an ideal hydrogen storage material with excellent hydrogen capacity, but the slow kinetics impedes its application. Herein, an efficient additive of V2C MXene-anchored PrF3 nanoparticles (PrF3/V2C) was synthesized, which presents excellent catalytic effect in improving the reversibility and stability of hydrogen storage in MgH2. The initial dehydrogenation temperature of the 5 wt.% PrF3/V2C-containing MgH2 (182 °C) is 105 °C lower than that of pure MgH2, and 6.5 wt.% hydrogen is rapidly released from 5 wt.% PrF3/V2C-added MgH2 sample in 6 min at 240 °C. In addition, 5 wt.% PrF3/V2C-containing MgH2 sample possesses outstanding reversible hydrogen storage capability of 6.5 wt.% after 10 cycles of dehydrogenation and hydrogenation. Microstructure analysis shows that the introduction of Pr improves the stability of V-species (V0 and V2+) and O-species (lattice oxygen (OL) and vacancy oxygen (OV)) formed during ball milling, promotes the interaction between V-species and O-species, and enhances their reversibility, which contributes to the significant improvement in re/dehydrogenation reversibility and cycling stability of MgH2. This study provides effective ideas and strategies for the purpose of designing and fabricating high-efficient catalysts for solid-state hydrogen storage materials.
Chen, K.; Ouyang, L. Z.; Zhong, H.; Liu, J. W.; Wang, H.; Shao, H. Y.; Zhang, Y.; Zhu, M. Converting H+ from coordinated water into H− enables super facile synthesis of LiBH4. Green Chem. 2019, 21, 4380–4387.
Wang, Y. R.; Chen, X. W.; Zhang, H. Y.; Xia, G. L.; Sun, D. L.; Yu, X. B. Heterostructures built in metal hydrides for advanced hydrogen storage reversibility. Adv. Mater. 2020, 32, 2002647.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.
Fan, Y. P.; Chen, D. D.; Liu, X. Y.; Fan, G. X.; Liu, B. Z. Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene. Int. J. Hydrogen Energy 2019, 44, 29297–29303.
Zhang, X.; Liu, Y. F.; Wang, K.; Gao, M. X.; Pan, H. G. Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation. Nano Res. 2015, 8, 533–545.
Zhang, H. Y.; Xia, G. L.; Zhang, J.; Sun, D. L.; Guo, Z. P.; Yu, X. B. Graphene-tailored thermodynamics and kinetics to fabricate metal borohydride nanoparticles with high purity and enhanced reversibility. Adv. Energy Mater. 2018, 8, 1702975.
Boateng, E.; Chen, A. C. Recent advances in nanomaterial-based solid-state hydrogen storage. Mater. Today Adv. 2020, 6, 100022.
Rusman, N. A. A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126.
Kammerer, J. A.; Duan, X. Y.; Neubrech, F.; Schröder, R. R.; Liu, N.; Pfannmöller, M. Stabilizing γ-MgH2 at nanotwins in mechanically constrained nanoparticles. Adv. Mater. 2021, 33, 2008259.
Wei, M. X.; Liu, Y. J.; Xing, X. F.; Zhang, Z.; Liu, T. (TiVZrNb)83Cr17 high-entropy alloy as catalyst for hydrogen storage in MgH2. Chem. Eng. J. 2023, 476, 146639.
Zhang, L. C.; Wang, K.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res. 2021, 14, 148–156.
Peng, C.; Zhang, Q. A. YC x F y nanosheets-supported Ni nanoparticles as a high-efficient catalyst for hydrogen desorption of MgH2. Nano Res. 2023, 16, 10938–10945
Guo, F. H.; Zhang, T. B.; Shi, L. M.; Song, L. Hydrogen absorption/desorption cycling performance of Mg-based alloys with in- situ formed Mg2Ni and LaH x ( x = 2, 3) nanocrystallines. J. Magnes. Alloys 2023, 11, 1180–1192.
Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Huang, Z. G.; Lu, Y. H.; Gao, M. X.; Pan, H. G. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 2021, 14, 2302–2313.
Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020, 13, 2063–2071.
Fu, H. F.; Hu, J.; Lu, Y. F.; Li, X. M.; Chen, Y. A.; Pan, F. S. Synergistic effect of a facilely synthesized MnV2O6 catalyst on improving the low-temperature kinetic properties of MgH2. ACS Appl. Mater. Interfaces 2022, 14, 33161–33172.
Kong, Q. Q.; Zhang, H. H.; Yuan, Z. L.; Liu, J. M.; Li, L. X.; Fan, Y. P.; Fan, G. X.; Liu, B. Z. Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2. ACS Sustain. Chem. Eng. 2020, 8, 4755–4763.
Soni, P. K.; Bhatnagar, A.; Shaz, M. A.; Srivastava, O. N. Effect of graphene templated fluorides of Ce and La on the de/rehydrogenation behavior of MgH2. Int. J. Hydrogen Energy 2017, 42, 20026–20035.
Wang, K.; Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Gao, M. X.; Pan, H. G. Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chem. Eng. J. 2021, 406, 126831.
Lillo-Ródenas, M. A.; Guo, Z. X.; Aguey-Zinsou, K. F.; Cazorla-Amorós, D.; Linares-Solano, A. Effects of different carbon materials on MgH2 decomposition. Carbon 2008, 46, 126–137.
Pang, Y. P.; Wang, Y. F.; Yang, J. H.; Zheng, S. Y. Engineering dual-functional VB2 nanoparticles in MgH2 for highly efficient hydrogen storage. Compos. Commun. 2021, 26, 100781.
Da Conceição, M. O. T.; Brum, M. C.; Dos Santos, D. S. The effect of V, VCl3 and VC catalysts on the MgH2 hydrogen sorption properties. J. Alloys Compd. 2014, 586, S101–S104.
Wang, Z. Y.; Ren, Z. H.; Jian, N.; Gao, M. X.; Hu, J. J.; Du, F.; Pan, H. G.; Liu, Y. F. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J. Mater. Chem. A 2018, 6, 16177–16185.
Tian, G. B.; Wu, F. Y.; Zhang, H. Y.; Wei, J.; Zhao, H.; Zhang, L. T. Boosting the hydrogen storage performance of MgH2 by vanadium based complex oxides. J. Phys. Chem. Solids 2023, 174, 111187.
Meng, Y.; Zhang, J.; Ju, S. L.; Yang, Y. X.; Li, Z. L.; Fang, F.; Sun, D. L.; Xia, G. L.; Pan, H. G.; Yu, X. B. Understanding and unlocking the role of V in boosting the reversible hydrogen storage performance of MgH2. J. Mater. Chem. A 2023, 11, 9762–9771.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135–11144.
Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.
Liu, Y. F.; Du, H. F.; Zhang, X.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Commun. 2016, 52, 705–708.
Huang, T. P.; Huang, X.; Hu, C. Z.; Wang, J.; Liu, H. B.; Xu, H.; Sun, F. Z.; Ma, Z. W.; Zou, J. X.; Ding, W. J. MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2. Chem. Eng. J. 2021, 421, 127851.
Lu, C. L.; Liu, H. Z.; Xu, L.; Luo, H.; He, S. X.; Duan, X. Q.; Huang, X. T.; Wang, X. H.; Lan, Z. Q.; Guo, J. Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride. J. Magnes. Alloys 2022, 10, 1051–1065.
Fan, X. L.; Xiao, X. Z.; Chen, L. X.; Zhang, L. T.; Shao, J.; Li, S. Q.; Ge, H. W.; Wang, Q. D. Significantly improved hydrogen storage properties of NaAlH4 catalyzed by Ce-based nanoparticles. J. Mater. Chem. A 2013, 1, 9752–9759.
Liang, L.; Zhao, S. L.; Wang, C. L.; Yin, D. M.; Wang, S. H.; Wang, Q. S.; Liang, F.; Li, S. L.; Wang, L. M.; Cheng, Y. Heterojunction synergistic catalysis of MXene-supported PrF3 nanosheets for the efficient hydrogen storage of AlH3. Nano Res. 2023, 16, 9546–9552.
Yuan, Z. L.; Zhang, D. F.; Fan, G. X.; Chen, Y. M.; Fan, Y. P.; Liu, B. Z. Synergistic effect of CeF3 nanoparticles supported on Ti3C2 MXene for catalyzing hydrogen storage of NaAlH4. ACS Appl. Energy Mater. 2021, 4, 2820–2827.
Wang, Y. H.; Fan, G. X.; Zhang, D. F.; Fan, Y. P.; Liu, B. Z. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2. J. Alloys Compd. 2022, 914, 165291.
Wu, M.; Wang, B. X.; Hu, Q. K.; Wang, L. B.; Zhou, A. G. The synthesis process and thermal stability of V2C MXene. Materials 2018, 11, 2112.
Zhang, Y. J.; Jiang, Y. D.; Duan, Z. H.; Huang, Q.; Wu, Y. W.; Liu, B. H.; Zhao, Q. N.; Wang, S.; Yuan, Z.; Tai, H. L. Highly sensitive and selective NO2 sensor of alkalized V2CT x MXene driven by interlayer swelling. Sens. Actuators B: Chem. 2021, 344, 130150.
Lan, L. L.; Fan, X. C.; Yu, S. B.; Gao, J.; Zhao, C. Y.; Hao, Q.; Qiu, T. Flexible two-dimensional vanadium carbide MXene-based membranes with ultra-rapid molecular enrichment for surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2022, 14, 40427–40436.
Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019, 4, 1603–1611.
Krishnan, R.; Swart, H. C.; Thirumalai, J.; Kumar, P. Depth profiling and photometric characteristics of Pr3+ doped BaMoO4 thin phosphor films grown using (266 nm Nd-YAG laser) pulsed laser deposition. Appl. Surf. Sci. 2019, 488, 783–790.
Corradini, P. G.; Antolini, E.; Perez, J. Structural and electrochemical characterization of carbon supported Pt–Pr catalysts for direct ethanol fuel cells prepared using a modified formic acid method in a CO atmosphere. Phys. Chem. Chem. Phys. 2013, 15, 11730–11739.
Cai, X. L.; Zhong, L. S.; Xu, Y. H.; Lu, Z. X.; Li, J. L.; Zhu, J. L.; Ding, Y. C.; Yan, H. H. Microstructural characterization of a V2C and V8C7 ceramic-reinforced Fe substrate surface compound layer by EBSD and TEM. J. Alloys Compd. 2018, 747, 8–20.
Wang, X. W.; Zhang, D. Z.; Zhang, H. B.; Gong, L. K.; Yang, Y.; Zhao, W. H.; Yu, S. J.; Yin, Y. D.; Sun, D. F. In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic–triboelectric hybrid generator. Nano Energy 2021, 88, 106242
Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem., Int. Ed. 2018, 57, 2248–2252.
Zhang, H. H.; Kong, Q. Q.; Hu, S.; Zhang, D. F.; Chen, H. P.; Xu, C. C.; Li, B. J.; Fan, Y. P.; Liu, B. Z. Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage. ACS Sustain. Chem. Eng. 2022, 10, 363–371.