Perovskite solar cells (PSCs) have seen remarkable progress in recent years, largely attributed to various additives that enhance both efficiency and stability. Among these, fluorine-containing additives have garnered significant interest because of their unique hydrophobic properties, effective defect passivation, and regulation capability on the crystallization process. However, a targeted structural approach to design such additives is necessary to further enhance the performance of PSCs. Here, fluoroalkyl ethylene with different fluoroalkyl chain lengths (CH2CH(CF2)nCF3, n = 3, 5, and 7) as liquid additives is used to investigate influences of fluoroalkyl chain lengths on crystallization regulation and defect passivation. The findings indicate that optimizing the quantity of F groups plays a crucial role in regulating the electron cloud distribution within the additive molecules. This optimization fosters strong hydrogen bonds and coordination effects with FA+ and uncoordinated Pb2+, ultimately enhancing crystal quality and device performance. Notably, 1H,1H,2H-perfluoro-1-hexene (PF3) with the optimal number of F presents the most effective modulation effect. A PSC utilizing PF3 achieves an efficiency of 24.05%, and exhibits exceptional stability against humidity and thermal fluctuations. This work sheds light on the importance of tailored structure designs in additives for achieving high-performance PSCs.
Feng, J. G.; Wang, X.; Li, J.; Liang, H. M.; Wen, W.; Alvianto, E.; Qiu, C. W.; Su, R.; Hou, Y. Resonant perovskite solar cells with extended band edge. Nat. Commun. 2023, 14, 5392.
Wang, G. L.; Lian, Q.; Wang, D.; Jiang, F.; Mi, G. J.; Li, D. Y.; Huang, Y. L.; Wang, Y.; Yao, X. Y.; Shi, R. et al. Thermal-radiation-driven ultrafast crystallization of perovskite films under heavy humidity for efficient inverted solar cells. Adv. Mater. 2022, 34, 2205143.
Zhou, J.; Gao, Y.; Pan, Y. Y.; Ren, F. M.; Chen, R.; Meng, X.; Sun, D. R.; He, J. Z.; Liu, Z. H.; Chen, W. Recent advances in the combined elevated temperature, humidity, and light stability of perovskite solar cells. Solar RRL 2022, 6, 2200772.
Wu, W. W.; Xiong, H.; Deng, J. H.; Wang, M. Q.; Zheng, H. Q.; Wu, M.; Yuan, S. Y.; Ma, Z. P.; Fan, J. D.; Li, W. Z. Rotatable skeleton for the alleviation of thermally accumulated defects in inorganic perovskite solar cells. ACS Energy Lett. 2023, 8, 2284–2291.
Lin, M. Y.; He, J. J.; Liu, X. Y.; Li, Q.; Wei, Z. P.; Sun, Y. T.; Leng, X. S.; Chen, M. J.; Xia, Z. H.; Peng, Y. et al. Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells. J. Energy Chem. 2023, 83, 595–601.
Qin, M. C.; Xue, H. B.; Zhang, H. K.; Hu, H. L.; Liu, K.; Li, Y. H.; Qin, Z. T.; Ma, J. J.; Zhu, H. P.; Yan, K. Y. et al. Precise control of perovskite crystallization kinetics via sequential A-site doping. Adv. Mater. 2020, 32, 2004630.
Lee, D. K.; Park, N. G. Additive engineering for highly efficient and stable perovskite solar cells. Appl. Phys. Rev. 2023, 10, 011308.
Chen, X. H.; Huang, J.; Gao, F.; Xu, B. Phosphine oxide additives for perovskite light-emitting diodes and solar cells. Chem 2023, 9, 562–575.
Abbas, M.; Rauf, M.; Cai, B. Y.; Guo, F.; Yuan, X. C.; Rana, T. R.; Mackenzie, J. D.; Kyaw, A. K. K. Enhanced open-circuit voltage and improved stability with 3-guanidinoproponic acid as the passivation agent in blade-coated inverted perovskite solar cells. ACS Appl. Energy Mater. 2023, 6, 6485–6495.
Luo, M.; Zong, X. P.; Zhao, M.; Sun, Z.; Chen, Y.; Liang, M.; Wu, Y. Z.; Xue, S. Synergistic effect of amide and fluorine of polymers assist stable inverted perovskite solar cells with fill factor > 83%. Chem. Eng. J. 2022, 442, 136136.
Liu, C.; Liu, S.; Wang, Y. F.; Chu, Y. M.; Yang, K.; Wang, X. D.; Gao, C. X.; Wang, Q. F.; Du, J. K.; Li, S. et al. Improving the performance of perovskite solar cells via a novel additive of N,1-fluoroformamidinium iodide with electron-withdrawing fluorine group. Adv. Funct. Mater. 2021, 31, 2010603.
Zhao, Y.; Li, B.; Tian, C. M.; Han, X. F.; Qiu, Y.; Xiong, H.; Li, K. R.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. et al. Anhydrous organic etching derived fluorine-rich terminated MXene nanosheets for efficient and stable perovskite solar cells. Chem. Eng. J. 2023, 469, 143862.
Wang, M. H.; Li, Y. W.; Zhao, X. Q.; Wang, W.; Chen, J. W.; Zhang, W. Z.; Huang, Y.; Zhang, L. J.; Chen, S. F. Rational design of additive with suitable functional groups toward high-quality FA0.75MA0.25SnI3 films and solar cells. Solar RRL 2022, 6, 2100800.
Jiang, X. Q.; Yang, G. Y.; Zhang, B. Q.; Wang, L. Q.; Yin, Y. F.; Zhang, F. S.; Yu, S. T.; Liu, S. W.; Bu, H. K.; Zhou, Z. M. et al. Understanding the role of fluorine groups in passivating defects for perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202313133.
Kong, Y. J.; Shen, W. J.; Cai, H. Y.; Dong, W.; Bai, C.; Zhao, J.; Huang, F. Z.; Cheng, Y. B.; Zhong, J. Multifunctional organic potassium salt additives as the efficient defect passivator for high-efficiency and stable perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2300932.
Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415.
Hu, W. P.; Wen, Z. L.; Yu, X.; Qian, P. S.; Lian, W. T.; Li, X. C.; Shang, Y. B.; Wu, X. J.; Chen, T.; Lu, Y. L. et al. In situ surface fluorination of TiO2 nanocrystals reinforces interface binding of perovskite layer for highly efficient solar cells with dramatically enhanced ultraviolet-light stability. Adv. Sci. (Weinh.) 2021, 8, 2004662
Liu, L. D.; Li, Y.; Zheng, C.; Liu, Z. K.; Yuan, N. Y.; Ding, J. N.; Wang, D. P.; Liu, S. Z. Collaborative strategy of multifunctional groups in trifluoroacetamide achieving efficient and stable perovskite solar cells. Solar RRL 2022, 6, 2200284.
Fu, S. Q.; Wang, J. H.; Liu, X. H.; Yuan, H. B.; Xu, Z. X.; Long, Y. J.; Zhang, J.; Huang, L. K.; Hu, Z. Y.; Zhu, Y. J. Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chem. Eng. J. 2021, 422, 130572.
Liu, B.; Wang, Y. Q.; Wu, Y. J.; Zhang, Y. H.; Lyu, J.; Liu, Z. Q.; Bian, S. H.; Bai, X.; Xu, L.; Zhou, D. L. et al. Vitamin natural molecule enabled highly efficient and stable planar n-p homojunction perovskite solar cells with efficiency exceeding 24.2%. Adv. Energy Mater. 2023, 13, 2203352.
Sun, R. M.; Tian, Q. S.; Li, M. B.; Wang, H. Z.; Chang, J. X.; Xu, W. X.; Li, Z. H.; Pan, Y. Y.; Wang, F. F.; Qin, T. S. Over 24% efficient poly(vinylidene fluoride) (PVDF)-coordinated perovskite solar cells with a photovoltage up to 1.22 V. Adv. Funct. Mater. 2023, 33, 2210071.
Zhao, C. X.; Zhang, H.; Almalki, M.; Xu, J.; Krishna, A.; Eickemeyer, F. T.; Gao, J.; Wu, Y. M.; Zakeeruddin, S. M.; Chu, J. H. et al. Stabilization of FAPbI3 with multifunctional alkali-functionalized polymer. Adv. Mater., 2023, 35, 2211619.
Zhang, J. K.; Li, Z. P.; Guo, F. J.; Jiang, H. K.; Yan, W. J.; Peng, C.; Liu, R. X.; Wang, L.; Gao, H. T.; Pang, S. P. et al. Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angew. Chem., Int. Ed. 2023, 62, e202305221.
Ma, C. Q.; Kang, M. C.; Lee, S. H.; Zhang, Y. L.; Kang, D. H.; Yang, W. X.; Zhao, P.; Kim, S. W.; Kwon, S. J.; Yang, C. W. et al. Facet-dependent passivation for efficient perovskite solar cells. J. Am. Chem. Soc. 2023, 145, 24349–24357.
Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.
Liang, L. S.; Luo, H. T.; Hu, J. J.; Li, H.; Gao, P. Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv. Energy Mater. 2020, 10, 2000197.
Jiang, B. L.; Zhang, B. L.; He, Y.; Peng, Q. J.; Jiao, Z. J.; Qiao, L. J. Combined effects of irradiation and hydrogen ions on surface oxidation of 308 L austenite stainless steel. Corros. Sci. 2021, 191, 109734.
Deng, J. D.; Ahangar, H.; Xiao, Y. H.; Luo, Y. Y.; Cai, X. Y.; Li, Y. N.; Wu, D. Y.; Yang, L.; Sheibani, E.; Zhang, J. B. Side-group-mediated small molecular interlayer to achieve superior passivation strength and enhanced carrier dynamics for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2309484.
Zhang, S. S.; Wu, S. H.; Chen, R.; Chen, W. T.; Huang, Y. Q.; Yang, Z. C.; Chen, W. Formamidine-assisted fast crystallization to fabricate formamidinium-based perovskite films for high-efficiency and stable solar cells. J. Mater. Chem. C 2020, 8, 1642–1648.
Chen, L.; Chen, J. D.; Wang, C. Y.; Ren, H.; Hou, H. Y.; Zhang, Y. F.; Li, Y. Q.; Gao, X. Y.; Tang, J. X. Suppressed voltage deficit and degradation of perovskite solar cells by regulating the mineralization of lead iodide. Small 2023, 19, 2207817.
Sun, Q. H.; Tuo, B.; Ren, Z. Q.; Xue, T. Y.; Zhang, Y. Q.; Ma, J. J.; Li, P. W.; Song, Y. L. A thiourea competitive crystallization strategy for FA-based perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2208885.
Zheng, H. Y.; Liu, G. Z.; Wu, W. W.; Xu, H. F.; Pan, X. Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive. J. Energy Chem. 2021, 57, 593–600.
Fu, Q.; Tang, X. C.; Liu, H.; Wang, R.; Liu, T. T.; Wu, Z. A.; Woo, H. Y.; Zhou, T.; Wan, X. J.; Chen, Y. S. et al. Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 2022, 144, 9500–9509.
Wang, F. F.; Li, M. B.; Tian, Q. S.; Sun, R. M.; Ma, H. Z.; Wang, H. Z.; Chang, J. X.; Li, Z. H.; Chen, H. Y.; Cao, J. P. et al. Monolithically-grained perovskite solar cell with mortise–tenon structure for charge extraction balance. Nat. Commun. 2023, 14, 3216.
Bu, T. L.; Wu, L.; Liu, X. P.; Yang, X. K.; Zhou, P.; Yu, X. X.; Qin, T. S.; Shi, J. J.; Wang, S.; Li, S. S. et al. Solar cells: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576.
Zhang, Y.; Zhuang, X. H.; Zhou, K.; Cai, C.; Hu, Z. Y.; Zhang, J.; Zhu, Y. J. Amorphous polymer with C=O to improve the performance of perovskite solar cells. J. Mater. Chem. C 2017, 5, 9037–9043.
Xu, Y. M.; Liu, G. H.; Hu, J. F.; Wang, G.; Chen, M. Y.; Chen, Y.; Li, M. J.; Zhang, H.; Chen, Y. H. In situ polymer network in perovskite solar cells enabled superior moisture and thermal resistance. J. Phys. Chem. Lett. 2022, 13, 3754–3762.