AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Polymer electrolytes for flexible zinc-air batteries: Recent progress and future directions

Jing Wu1,§Wen-Ya Wu2,§Suxi Wang2Dan Kai2Enyi Ye2Warintorn Thitsartarn2Janet Beng Hoon Tan2Jianwei Xu1Qingyu Yan3Qiang Zhu1,2,4( )Xian Jun Loh2,5( )
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore

§ Jing Wu and Wen-Ya Wu contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

This review article explores advancements and challenges in electrolytes for flexible zinc-air batteries, focusing on their impact on battery performance and future directions involving nanocomposites and conductive polymers. It emphasizes the need for interdisciplinary research in this field, offering a concise overview for researchers and industry professionals.

Abstract

This review article delves into the development of electrolytes for flexible zinc-air batteries (FZABs), a critical component driving the advancement of flexible electronics. We started by surveying the current advancements in electrolyte technologies, including solid-state and gel-based types, and their contributions to enhance the flexibility, efficiency, and durability of FZABs. Secondly, we explored the challenges in this domain, focusing on maintaining electrolyte stability under mechanical stress, ensuring compatibility with flexible substrates, optimizing ion conductivity, and under harsh environmental conditions. Furthermore, the key issues regarding interface details between electrolyte and the electrodes are covered as well. We then discussed the future of electrolyte development in FZABs, highlighting potential avenues such as materials development, sustainability, in-situ studies, and battery integration. This review offers an in-depth overview of the advancements, challenges, and potential breakthroughs in creating electrolytes for FZABs over the past five years. It serves as a guide for both researchers and industry professionals in this dynamic area.

References

[1]

Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533.

[2]

Huang, S. Y.; Liu, Y.; Zhao, Y.; Ren, Z. F.; Guo, C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924.

[3]
Tang, J. Carbon nanotube-based flexible electronics. In Flexible, Wearable, and Stretchable Electronics. CRS Press, 2020; pp 137–156.
[4]

You, R.; Liu, Y. Q.; Hao, Y. L.; Han, D. D.; Zhang, Y. L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 2020, 32, 1901981.

[5]

Li, D. D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

[6]

Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941.

[7]
Research, G. V. Flexible electronics market size, share & trends analysis report by component, by application (consumer electronics, automotive, healthcare, industrial), by region, and segment forecasts, 2023–2030. Grand View Research 2021.
[8]

Fan, X. Y.; Liu, B.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Flexible and wearable power sources for next-generation wearable electronics. Batter. Supercaps 2020, 3, 1262–1274.

[9]

Gao, M. Y.; Wang, P.; Jiang, L. L.; Wang, B. W.; Yao, Y.; Liu, S.; Chu, D. W.; Cheng, W. L.; Lu, Y. R. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157.

[10]

Maharjan, P.; Bhatta, T.; Cho, H.; Hui, X.; Park, C.; Yoon, S.; Salauddin, M.; Rahman, M. T.; Rana, S. S.; Park, J. Y. A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications. Adv. Energy Mater. 2020, 10, 2002782.

[11]

Zhou, J. W.; Cheng, J. L.; Wang, B.; Peng, H. S.; Lu, J. Flexible metal-gas batteries: A potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 2020, 13, 1933–1970.

[12]

Jia, R.; Shen, G. Z.; Qu, F. Y.; Chen, D. Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Stor. Mater. 2020, 27, 169–186.

[13]

Shi, X. L.; Chen, W. Y.; Zhang, T.; Zou, J.; Chen, Z. G. Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy Environ. Sci. 2021, 14, 729–764.

[14]

Wu, Z. P.; Wang, Y. L.; Liu, X. B.; Lv, C.; Li, Y. S.; Wei, D.; Liu, Z. F. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716.

[15]

Chen, J. Y.; Liang, J. X.; Zhou, Y.; Sha, Z.; Lim, S.; Huang, F.; Han, Z. J.; Brown, S. A.; Cao, L. Y.; Wang, D. W. et al. A vertical graphene enhanced Zn-MnO2 flexible battery towards wearable electronic devices. J. Mater. Chem. A 2021, 9, 575–584.

[16]

Zheng, J.; Solco, S. F. D.; Wong, C. J. E.; Sia, S. A.; Tan, X. Y.; Cao, J.; Yeo, J. C. C.; Yan, W. L.; Zhu, Q.; Yan, Q. Y. et al. Integrating recyclable polymers into thermoelectric devices for green electronics. J. Mater. Chem. A 2022, 10, 19787–19796.

[17]

Tang, T.; Kyaw, A. K. K.; Zhu, Q.; Xu, J. W. Water-dispersible conducting polyazulene and its application in thermoelectrics. Chem. Commun. 2020, 56, 9388–9391.

[18]

Cao, J.; Sim, Y.; Tan, X. Y.; Zheng, J.; Chien, S. W.; Jia, N.; Chen, K. W.; Tay, Y. B.; Dong, J. F.; Yang, L. et al. Upcycling silicon photovoltaic waste into thermoelectrics (Adv. Mater. 19/2022). Adv. Mater. 2022, 34, 2270144

[19]

Xiang, P.; Chen, X. F.; Xiao, B. B.; Wang, Z. M. Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 2019, 11, 8115–8125.

[20]

Zhang, X. L.; Tang, Y. B.; Zhang, F.; Lee, C. S. A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588.

[21]

Huang, Z.; Luo, P. F.; Jia, S. K.; Zheng, H. H.; Lyu, Z. C. A sulfur-doped carbon-enhanced Na3V2(PO4)3 nanocomposite for sodium-ion storage. J. Phys. Chem. Solids 2022, 167, 110746.

[22]

Wang, M.; Jiang, C. L.; Zhang, S. Q.; Song, X. H.; Tang, Y. B.; Cheng, H. M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 2018, 10, 667–672.

[23]

Mu, S. N.; Liu, Q. R.; Kidkhunthod, P.; Zhou, X. L.; Wang, W. L.; Tang, Y. B. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 2020, 8, nwaa178.

[24]

Huang, Z.; Luo, P. F.; Wu, Q. B.; Zheng, H. H. Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2(PO4)3 nanodots as novel anodes for sodium energy storage. J. Phys. Chem. Solids 2022, 161, 110479.

[25]

Li, H.; Chen, J.; Fang, J. Recent advances in wearable aqueous metal-air batteries: From configuration design to materials fabrication. Adv. Mater. Technol. 2023, 8, 2201762.

[26]

Liu, Q. C.; Chang, Z. W.; Li, Z. J.; Zhang, X. B. Flexible metal-air batteries: Progress, challenges, and perspectives. Small Methods 2018, 2, 1700231.

[27]
Agarwal, A.; Hussain, C. M. Metal-air batteries for wearable electronics: A case study for modern society. In Concepts in Smart Societies; Hussain, C.; Petrillo, A.; Ul Islam, S., Eds.; CRC Press: Boca Raton, 2023; pp 298–312.
[28]

Wang, L.; Jiang, Y.; Li, S. Y.; Chen, X. H.; Xi, F. S.; Wan, X. H.; Ma, W. H.; Deng, R. Scalable synthesis of N-doped Si/G@voids@C with porous structures for high-performance anode of lithium-ion batteries. Rare Met. 2023, 42, 4091–4102.

[29]

Wei, T.; Zhou, Y. Y.; Sun, C.; Guo, X. T.; Xu, S. D.; Chen, D. F.; Tang, Y. F. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 2024, 17, 2763–2769

[30]

Wang, C. F.; He, T.; Cheng, J. L.; Guan, Q.; Wang, B. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles. Adv. Funct. Mater. 2020, 30, 2004430.

[31]

Zhang, J.; Zhou, Q. X.; Tang, Y. W.; Zhang, L.; Li, Y. G. Zinc-air batteries: Are they ready for prime time. Chem. Sci. 2019, 10, 8924–8929.

[32]

Yang, X. H.; Li, S. M.; Ye, D. W.; Kuang, J. Q.; Guo, S.; Zou, Y. Y.; Cai, X. Integrated bifunctional oxygen electrodes for flexible zinc-air batteries: From electrode designing to wearable energy storage. Adv. Mater. Technol. 2022, 7, 2100673.

[33]

Smee, A. LIII. On the galvanic properties of the metallic elementary bodies, with a description of a new chemico-mechanical battery. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1840, 16, 315–321.

[34]
Maiche, L. FrenchPat. 1878 , 127, 69.
[35]
Heise, G. W. Air-depolarized primary battery. U.S. Patent 1899615A, February 28, 1933.
[36]

Mainar, A. R.; Colmenares, L. C.; Blázquez, J. A.; Urdampilleta, I. A brief overview of secondary zinc anode development: The key of improving zinc-based energy storage systems. Int. J. Energy Res. 2018, 42, 903–918.

[37]

Crabb, R. L.; Treble, F. C. Thin silicon solar cells for large flexible arrays. Nature 1967, 213, 1223–1224.

[38]

Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973, 14, 589.

[39]

Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

[40]

Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. All-solid-state cable-type flexible zinc-air battery. Adv. Mater. 2015, 27, 1396–1401.

[41]

Zarrin, H.; Sy, S.; Fu, J.; Jiang, G. P.; Kang, K.; Jun, Y. S.; Yu, A. P.; Fowler, M.; Chen, Z. W. Molecular functionalization of graphene oxide for next-generation wearable electronics. ACS Appl. Mater. Interfaces 2016, 8, 25428–25437.

[42]

Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046.

[43]

Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

[44]

Koo, J. H.; Kim, D. C.; Shim, H. J.; Kim, T. H.; Kim, D. H. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv. Funct. Mater. 2018, 28, 1801834.

[45]

Kwon, J. H.; Jeon, Y.; Choi, S.; Park, J. W.; Kim, H.; Choi, K. C. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl. Mater. Interfaces 2017, 9, 43983–43992.

[46]

Lee, S. M.; Kwon, J. H.; Kwon, S.; Choi, K. C. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron Devices 2017, 64, 1922–1931.

[47]

Acar, G.; Ozturk, O.; Golparvar, A. J.; Elboshra, T. A.; Böhringer, K.; Yapici, M. K. Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics 2019, 8, 479.

[48]

Ma, L. Y.; Wu, R. H.; Patil, A.; Zhu, S. H.; Meng, Z. H.; Meng, H. Q.; Hou, C.; Zhang, Y. F.; Liu, Q.; Yu, R. et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 2019, 29, 1904549.

[49]

Wang, L.; Fu, X. M.; He, J. Q.; Shi, X.; Chen, T. Q.; Chen, P. N.; Wang, B. J.; Peng, H. S. Application challenges in fiber and textile electronics. Adv. Mater. 2020, 32, 1901971.

[50]

Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.

[51]

Xie, M. Y.; Hisano, K.; Zhu, M. Z.; Toyoshi, T.; Pan, M.; Okada, S.; Tsutsumi, O.; Kawamura, S.; Bowen, C. Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 2019, 4, 1800626.

[52]

Park, H. L.; Lee, Y.; Kim, N.; Seo, D. G.; Go, G. T.; Lee, T. W. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 2020, 32, 1903558.

[53]

Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

[54]

Pang, Q.; Lou, D.; Li, S. J.; Wang, G. M.; Qiao, B. B.; Dong, S. R.; Ma, L.; Gao, C. Y.; Wu, Z. H. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 2020, 7, 1902673.

[55]

Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

[56]

Xu, F. L.; Li, X. Y.; Shi, Y.; Li, L. H.; Wang, W.; He, L.; Liu, R. P. Recent developments for flexible pressure sensors: A review. Micromachines 2018, 9, 580.

[57]

Singh, E.; Meyyappan, M.; Nalwa, H. S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586.

[58]

Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

[59]

Chang, C.; Nie, X.; Li, X. X.; Tao, P.; Fu, B. W.; Wang, Z. Y.; Xu, J. L.; Ye, Q. X.; Zhang, J. Y.; Song, C. Y. et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. J. Mater. Chem. A 2020, 8, 20970–20978.

[60]

Dong, P.; Rodrigues, M. T. F.; Zhang, J.; Borges, R. S.; Kalaga, K.; Reddy, A. L. M.; Silva, G. G.; Ajayan, P. M.; Lou, J. A flexible solar cell/supercapacitor integrated energy device. Nano Energy 2017, 42, 181–186.

[61]

Pei, Z. X.; Ding, L. Y.; Wang, C.; Meng, Q. Q.; Yuan, Z. W.; Zhou, Z.; Zhao, S. L.; Chen, Y. Make it stereoscopic: Interfacial design for full-temperature adaptive flexible zinc-air batteries. Energy Environ. Sci. 2021, 14, 4926–4935.

[62]

Liu, H. R.; Xie, W.; Huang, Z. Y.; Yao, C. H.; Han, Y. H.; Huang, W. Recent advances in flexible Zn-air batteries: Materials for electrodes and electrolytes. Small Methods 2022, 6, 2101116.

[63]

Wang, N.; Ning, S. L.; Yu, X. L.; Chen, D.; Li, Z. L.; Xu, J. C.; Meng, H.; Zhao, D. K.; Li, L. G.; Liu, Q. M. et al. Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc-air batteries. Appl. Catal. B: Environ. 2022, 302, 120838.

[64]

Zhang, P.; Wang, K.; Pei, P.; Zuo, Y.; Wei, M.; Liu, X.; Xiao, Y.; Xiong, J. Selection of hydrogel electrolytes for flexible zinc-air batteries. Mater. Today Chem. 2021, 21, 100538.

[65]

Dou, H. Z.; Xu, M.; Zheng, Y.; Li, Z. Q.; Wen, G. B.; Zhang, Z.; Yang, L. X.; Ma, Q. Y.; Yu, A. P.; Luo, D. et al. Bioinspired tough solid-state electrolyte for flexible ultralong-life zinc-air battery. Adv. Mater. 2022, 34, 2110585.

[66]

Wang, Z. Q.; Meng, X. Y.; Wu, Z. Q.; Mitra, S. Development of flexible zinc-air battery with nanocomposite electrodes and a novel separator. J. Energy Chem. 2017, 26, 129–138.

[67]

Yang, M. M.; Shu, X. X.; Pan, W.; Zhang, J. T. Toward flexible zinc-air batteries with self-supported air electrodes. Small 2021, 17, 2006773.

[68]

Wang, X. X.; Yang, X. X.; Liu, H.; Han, T.; Hu, J. H.; Li, H. B.; Wu, G. Air electrodes for flexible and rechargeable Zn-air batteries. Small Struct. 2022, 3, 2100103.

[69]

Fan, X. Y.; Liu, J.; Song, Z. S.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 2019, 56, 454–462.

[70]

Chen, Z. Y.; Yang, X.; Li, W. Q.; Liang, X. G.; Guo, J. M.; Li, H. H.; He, Y.; Kim, Y. Nanofiber composite for improved water retention and dendrites suppression in flexible zinc-air batteries. Small 2021, 17, 2103048.

[71]

Song, Z. S.; Ding, J.; Liu, B.; Liu, X. R.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier. Adv. Mater. 2020, 32, 1908127.

[72]

Xu, N. N.; Zhang, Y. X.; Wang, M.; Fan, X. J.; Zhang, T.; Peng, L. W.; Zhou, X. D.; Qiao, J. L. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy 2019, 65, 104021.

[73]

Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. A.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.

[74]

Wang, H. F.; Tang, C.; Wang, B.; Li, B. Q.; Cui, X. Y.; Zhang, Q. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc-air batteries. Energy Stor. Mater. 2018, 15, 124–130.

[75]

Huang, S. W.; Li, H.; Pei, P. C.; Wang, K. L.; Xiao, Y.; Zhang, C.; Chen, C. A dendrite-resistant zinc-air battery. iScience 2020, 23, 101169.

[76]

Jiao, M. L.; Dai, L. X.; Ren, H. R.; Zhang, M. T.; Xiao, X.; Wang, B. R.; Yang, J. L.; Liu, B. L.; Zhou, G. M.; Cheng, H. M. A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem. 2023, 135, e202301114.

[77]

Hui, X. B.; Zhang, P.; Li, J. F.; Zhao, D. Y.; Li, Z. Q.; Zhang, Z. W.; Wang, C. X.; Wang, R. T.; Yin, L. W. In situ integrating highly ionic conductive LDH-array@PVA gel electrolyte and mXene/Zn anode for dendrite-free high-performance flexible Zn-air batteries. Adv. Energy Mater. 2022, 12, 2201393

[78]

Guan, Q.; Li, Y. P.; Bi, X. X.; Yang, J.; Zhou, J. W.; Li, X. L.; Cheng, J. L.; Wang, Z. P.; Wang, B.; Lu, J. Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air. Adv. Energy Mater. 2019, 9, 1901434.

[79]

Hosseini, S.; Soltani, S. M.; Li, Y. Y. Current status and technical challenges of electrolytes in zinc-air batteries: An in-depth review. Chem. Eng. J. 2021, 408, 127241.

[80]

Liu, X. R.; Fan, X. Y.; Liu, B.; Ding, J.; Deng, Y. D.; Han, X. P.; Zhong, C.; Hu, W. B. Mapping the design of electrolyte materials for electrically rechargeable zinc-air batteries. Adv. Mater. 2021, 33, 2006461.

[81]

Lu, C. Y.; Ren, R. Z.; Zhu, Z. W.; Pan, G.; Wang, G. G.; Xu, C. M.; Qiao, J. S.; Sun, W.; Huang, Q. G.; Liang, H. R. et al. BaCo0.4Fe0.4Nb0.1Sc0.1O3− δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem. Eng. J. 2023, 472, 144878.

[82]

Cai, X. Y.; Li, X. D.; You, J. B.; Yang, F.; Shadike, Z.; Qin, S.; Luo, L. X.; Guo, Y. G.; Yan, X. H.; Shen, S. Y. et al. Lithium-mediated ammonia electrosynthesis with ether-based electrolytes. J. Am. Chem. Soc. 2023, 145, 25716–25725.

[83]

Liu, Q. Q.; Liu, R. T.; He, C. H.; Xia, C. F.; Guo, W.; Xu, Z. L.; Xia, B. Y. Advanced polymer-based electrolytes in zinc-air batteries. eScience 2022, 2, 453–466.

[84]

Clark, S.; Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Blázquez, J. A.; Tolchard, J. R.; Latz, A.; Horstmann, B. Towards rechargeable zinc-air batteries with aqueous chloride electrolytes. J. Mater. Chem. A 2019, 7, 11387–11399.

[85]

Yi, J.; Liang, P. C.; Liu, X. Y.; Wu, K.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries. Energy Environ. Sci. 2018, 11, 3075–3095.

[86]

Zhao, Z. Q.; Fan, X. Y.; Ding, J.; Hu, W. B.; Zhong, C.; Lu, J. Challenges in zinc electrodes for alkaline zinc-air batteries: Obstacles to commercialization. ACS Energy Lett. 2019, 4, 2259–2270.

[87]

Xu, W. W.; Lu, Z. Y.; Zhang, T. Y.; Zhong, Y. R.; Wu, Y. S.; Zhang, G. X.; Liu, J. F.; Wang, H. L.; Sun, X. M. An advanced zinc air battery with nanostructured superwetting electrodes. Energy Stor. Mater. 2019, 17, 358–365.

[88]

Yu, H. M.; Chen, D. P.; Ni, X. Y.; Qing, P.; Yan, C. S.; Wei, W. F.; Ma, J. M.; Ji, X. B.; Chen, Y. J.; Chen, L. B. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 2023, 16, 2684–2695.

[89]

Fan, X. S.; Tan, B. H.; Li, Z. B.; Loh, X. J. Control of PLA stereoisomers-based polyurethane elastomers as highly efficient shape memory materials. ACS Sustain. Chem. Eng. 2017, 5, 1217–1227.

[90]

Wang, S. X.; Ong, P. J.; Liu, S. L.; Thitsartarn, W.; Tan, M. J. B. H.; Suwardi, A.; Zhu, Q.; Loh, X. J. Recent advances in host–guest supramolecular hydrogels for biomedical applications. Chem.—Asian J. 2022, 17, e202200608.

[91]

Wang, S. X.; Wu, W. Y.; Yeo, J. C. C.; Soo, X. Y. D.; Thitsartarn, W.; Liu, S. L.; Tan, B. H.; Suwardi, A.; Li, Z. B.; Zhu, Q. et al. Responsive hydrogel dressings for intelligent wound management. BMEMat 2023, 1, e12021.

[92]

Zhu, H. J.; Qiang, J. M. J.; Wang, C. G.; Chan, C. Y.; Zhu, Q.; Ye, E. Y.; Li, Z. B.; Loh, X. J. Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact. Mater. 2022, 18, 471–491.

[93]

Wu, J. K.; Liu, B.; Fan, X. Y.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes. Carbon Energy 2020, 2, 370–386.

[94]

Liu, S. S.; Wang, M. F.; Sun, X. Y.; Xu, N.; Liu, J.; Wang, Y. Z.; Qian, T.; Yan, C. L. Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries. Adv. Mater. 2018, 30, 1704898.

[95]

Yang, X.; Liu, K. J.; Han, X. Y.; Xu, J. H.; Bian, M. Y.; Zheng, D. Y.; Xie, H. J.; Zhang, Y. B.; Yang, X. G. Transformation of waste battery cathode material LiMn2O4 into efficient ultra-low temperature NH3-SCR catalyst: Proton exchange synergistic vanadium modification. J. Hazard. Mater. 2023, 459, 132209.

[96]

Cheng, Y. T.; Wu, H. F.; Han, J. H.; Zhong, S. Y.; Huang, S. H.; Chu, S. F.; Song, S. X.; Reddy, K. M.; Wang, X. D.; Wu, S. Y. et al. Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc-air batteries. Nanoscale 2021, 13, 10862–10870.

[97]

Yu, J. Y.; Chen, F. Y.; Tang, Q.; Gebremariam, T. T.; Wang, J. L.; Gong, X. F.; Wang, X. L. Ag-modified Cu foams as three-dimensional anodes for rechargeable zinc-air batteries. ACS Appl. Nano Mater. 2019, 2, 2679–2688.

[98]

Hyun, S.; Shanmugam, S. Hierarchical nickel-cobalt dichalcogenide nanostructure as an efficient electrocatalyst for oxygen evolution reaction and a Zn-air battery. ACS Omega 2018, 3, 8621–8630.

[99]

Lang, X. L.; Hu, Z. B.; Wang, C. Y. Bifunctional air electrodes for flexible rechargeable Zn-air batteries. Chin. Chem. Lett. 2021, 32, 999–1009.

[100]

Jia, B. E.; Thang, A. Q.; Yan, C. S.; Liu, C. T.; Lv, C. D.; Zhu, Q.; Xu, J. W.; Chen, J.; Pan, H. G.; Yan, Q. Y. Rechargeable aqueous aluminum-ion battery: Progress and outlook. Small 2022, 18, 2107773.

[101]

Shi, Y.; Lee, C.; Tan, X. Y.; Yang, L.; Zhu, Q.; Loh, X.; Xu, J. W.; Yan, Q. Y. Atomic-level metal electrodeposition: Synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small Structures 2022, 3, 2100185.

[102]

Caramia, V.; Bozzini, B. Materials science aspects of zinc-air batteries: A review. Mater. Renew. Sustain. Energy 2014, 3, 28.

[103]

Liu, Q. F.; Pan, Z. F.; Wang, E. D.; An, L.; Sun, G. Q. Aqueous metal-air batteries: Fundamentals and applications. Energy Stor. Mater. 2020, 27, 478–505.

[104]

Lee, J. J. C.; Sugiarto, S.; Ong, P. J.; Soo, X. Y. D.; Ni, X. P.; Luo, P.; Hnin, Y. Y. K.; See, J. S. Y.; Wei, F. X.; Zheng, R. Y. et al. Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application. J. Energy Storage 2022, 56, 106118.

[105]

Ong, P. J.; Leow, Y.; Soo, X. Y. D.; Chua, M. H.; Ni, X. P.; Suwardi, A.; Tan, C. K. I.; Zheng, R. Y.; Wei, F. X.; Xu, J. W. et al. Valorization of spent coffee grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage. Waste Manage. 2023, 157, 339–347.

[106]

Ong, P. J.; Lum, Y. Y.; Soo, X. Y. D.; Wang, S. X.; Wang, P.; Chi, D. Z.; Liu, H. F.; Kai, D.; Lee, C. L. K.; Yan, Q. Y. et al. Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics. Constr. Build. Mater. 2023, 386, 131583.

[107]

Soo, X. Y. D.; Png, Z. M.; Chua, M. H.; Yeo, J. C. C.; Ong, P. J.; Wang, S. X.; Wang, X. Z.; Suwardi, A.; Cao, J.; Chen, Y. J. et al. A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting. Mater. Today Adv. 2022, 14, 100227.

[108]

Ong, P. J.; Heng, Z. X. J.; Xing, Z. X.; Ko, H. Y. Y.; Wang, P.; Liu, H. F.; Ji, R.; Wang, X. Z.; Tan, B. H.; Li, Z. B. et al. Wax from pyrolysis of waste plastics as a potential source of phase change material for thermal energy storage. Trans. Tianjin Univ. 2023, 29, 225–234.

[109]
Lu, Q.; Zou, X. H.; Bu, Y. F. Introduction to zinc-air batteries. In Zinc-Air Batteries: Introduction, Design Principles and Emerging Technologies, Shao, Z. P.; Xu, X. M., Eds.; Wiley: Weinheim, 2022.
[110]

Li, Q. Y.; Wang, H.; Yu, H. M.; Fu, M.; Liu, W.; Zhao, Q. W.; Huang, S. Z.; Zhou, L. J.; Wei, W. F.; Ji, X. B. et al. Engineering an ultrathin and hydrophobic composite zinc anode with 24 µm thickness for high-performance Zn batteries. Adv. Funct. Mater. 2023, 33, 2303466.

[111]

Yu, H. M.; Chen, D. P.; Li, Q. Y.; Yan, C. S.; Jiang, Z. H.; Zhou, L. J.; Wei, W. F.; Ma, J. M.; Ji, X. B.; Chen, Y. J. et al. In situ construction of anode-molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 2023, 13, 2300550

[112]

Jiang, Y; Deng, Y. P; Liang, R; Fu, J; Luo, D; Liu, G; Li, J; Zhang, Z; Hu, Y; Chen, Z. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911

[113]

Zhang, Y. N.; Qin, H. L.; Alfred, M.; Ke, H. Z.; Cai, Y. B.; Wang, Q. Q.; Huang, F. L.; Liu, B.; Lv, P. F.; Wei, Q. F. Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Stor. Mater. 2021, 42, 88–96.

[114]

Pei, Z. X.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Fei, J. Y.; Wei, L.; Chen, J. S.; Wang, C.; Qi, R. J.; Liu, Z. W. et al. A flexible rechargeable zinc-air battery with excellent low-temperature adaptability. Angew. Chem., Int. Ed. 2020, 59, 4793–4799.

[115]

Zhang, Y. A.; Chen, Y. J.; Alfred, M.; Huang, F. L.; Liao, S. Q.; Chen, D. S.; Li, D. W.; Wei, Q. F. Alkaline sodium polyacrylate-starch hydrogels with tolerance to cold conditions for stretchable zinc-air batteries. Compos. Part B: Eng. 2021, 224, 109228.

[116]

Cao, Z. Q.; Hu, H. B.; Wu, M. Z.; Tang, K.; Jiang, T. T. Planar all-solid-state rechargeable Zn-air batteries for compact wearable energy storage. J. Mater. Chem. A 2019, 7, 17581–17593.

[117]

Feng, X. B.; Sun, L. W.; Wang, W.; Zhao, Y. Z.; Shi, J. W. Construction of CdS@ZnO core–shell nanorod arrays by atomic layer deposition for efficient photoelectrochemical H2 evolution. Sep. Purif. Technol. 2023, 324, 124520.

[118]

Zuo, Y. Y.; Wang, K. L.; Wei, M. H.; Zhao, S. Y.; Zhang, P. F.; Pei, P. C. Starch gel for flexible rechargeable zinc-air batteries. Cell Rep. Phys. Sci. 2022, 3, 100687.

[119]

Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

[120]

Nishide, H.; Oyaizu, K. Toward flexible batteries. Science 2008, 319, 737–738.

[121]

Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516–521.

[122]

Liu, M. T.; Chen, Y.; Zhu, Q.; Tao, J. J.; Tang, C. M.; Ruan, H. J.; Wu, Y. L.; Loh, X. J. Antioxidant thermogelling formulation for burn wound healing. Chem.—Asian J. 2022, 17, e202200396.

[123]

Lambert, H.; Castillo Bonillo, A.; Zhu, Q.; Zhang, Y. W.; Lee, T. C. Supramolecular gating of guest release from cucurbit[7]uril using de novo design. npj Comput. Mater. 2022, 8, 21.

[124]

Chen, R.; Xu, X. B.; Peng, S. Y.; Chen, J. M.; Yu, D. F.; Xiao, C. H.; Li, Y. L.; Chen, Y. T.; Hu, X. F.; Liu, M. J. et al. A flexible and safe aqueous zinc-air battery with a wide operating temperature range from −20 to 70 °C. ACS Sustain. Chem. Eng. 2020, 8, 11501–11511.

[125]

Wang, M. F.; Qian, T.; Liu, S. S.; Zhou, J. Q.; Yan, C. L. Unprecedented activity of bifunctional electrocatalyst for high power density aqueous zinc-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 21216–21224.

[126]

Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y. D.; Han, X. P.; Wu, T. P.; Hu, W. B. et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 2017, 7, 1700779.

[127]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[128]

Wang, Z. Y.; Fu, W. Q.; Hu, L. Y.; Zhao, M.; Guo, T. J.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: Possessed redox characteristics and secreted endogenous electron mediator. Sci. Total Environ. 2021, 781, 146686.

[129]

Wu, Y.; Wu, H. F.; Zhao, Y.; Jiang, G. Y.; Shi, J. T.; Guo, C. J.; Liu, P.; Jin, Z. J. Metastable structures with composition fluctuation in cuprate superconducting films grown by transient liquid-phase assisted ultra-fast heteroepitaxy. Mater. Today Nano 2023, 24, 100429.

[130]

Lu, Y. G.; Stegmaier, M.; Nukala, P.; Giambra, M. A.; Ferrari, S.; Busacca, A.; Pernice, W. H. P.; Agarwal, R. Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 2017, 17, 150–155.

[131]

Fan, X. Y.; Zhong, C.; Liu, J.; Ding, J.; Deng, Y. D.; Han, X. P.; Zhang, L.; Hu, W. B.; Wilkinson, D. P.; Zhang, J. J. Opportunities of flexible and portable electrochemical devices for energy storage: Expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 2022, 122, 17155–17239.

[132]

Xu, M.; Dou, H. Z.; Zhang, Z.; Zheng, Y.; Ren, B. H.; Ma, Q. T.; Wen, G. B.; Luo, D.; Yu, A. P.; Zhang, L. H. et al. Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries. Angew. Chem. 2022, 134, e202117703.

[133]

Fan, X. Y.; Wang, H. Z.; Liu, X. R.; Liu, J.; Zhao, N. Q.; Zhong, C.; Hu, W. B.; Lu, J. Functionalized nanocomposite gel polymer electrolyte with strong alkaline-tolerance and high zinc anode stability for ultralong-life flexible zinc-air batteries. Adv. Mater. 2023, 35, 2209290.

[134]

Zhang, G. T.; Cai, X. X.; Li, C.; Yao, J. S.; Liu, W. L.; Qiao, C. D.; Li, G. D.; Wang, Q.; Han, J. J. Construction of alkaline gel polymer electrolytes with a double cross-linked network for flexible zinc-air batteries. ACS Appl. Polym. Mater. 2023, 5, 3622–3631.

[135]

Song, Z. S.; Liu, X. R.; Ding, J.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Poly(acrylic acid)-based composite gel polymer electrolytes with high mechanical strength and ionic conductivity toward flexible zinc-air batteries with long cycling lifetime. ACS Appl. Mater. Interfaces 2022, 14, 49801–49810.

[136]

Zhang, Y. N.; Wu, D. S.; Huang, F. L.; Cai, Y. B.; Li, Y. G.; Ke, H. Z.; Lv, P. F.; Wei, Q. F. “Water-in-salt” nonalkaline gel polymer electrolytes enable flexible zinc-air batteries with ultra-long operating time. Adv. Funct. Mater. 2022, 32, 2203204.

[137]

Li, M.; Liu, B.; Fan, X. Y.; Liu, X. R.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 28909–28917.

[138]

Zhang, P. F.; Wang, K. L.; Zuo, Y. Y.; Wei, M. H.; Wang, H. W.; Chen, Z.; Shang, N.; Pei, P. C. Enhanced copolymer gel modified by dual surfactants for flexible zinc-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 49109–49118.

[139]

Zhang, P. F.; Wang, K. L.; Zuo, Y. Y.; Wei, M. H.; Wang, H. W.; Chen, Z.; Shang, N.; Pei, P. C. A self-designed double cross-linked gel for flexible zinc-air battery with extreme conditions adaptability. Chem. Eng. J. 2023, 451, 138622.

[140]

Shang, N; Wang, K. L.; Wei, M. H.; Zuo, Y. Y.; Zhang, P. F.; Wang, H. W.; Chen, Z; Zhong, D. Y.; Pei, P. C. Quasi-liquid gel electrolyte for enhanced flexible Zn-Air batteries. Adv. Funct. Mater 2023, 33, 2303719

[141]

Fan, X. Y.; Zhang, R.; Sui, S. M.; Liu, X. R.; Liu, J.; Shi, C. S.; Zhao, N. Q.; Zhong, C.; Hu, W. B. Starch-based superabsorbent hydrogel with high electrolyte retention capability and synergistic interface engineering for long-lifespan flexible zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202302640.

[142]

Chen, Z. H.; Jin, J. H.; Yang, S. L.; Li, G.; Zhang, J. J. Enhanced semi-interpenetrating network quasi-solid electrolytes modified by hollow porous nanofibers for flexible zinc-air batteries. ACS Sustain. Chem. Eng. 2023, 11, 10391–10401.

[143]

Jia, X. L.; Ma, J. L.; Zhang, C. F.; Zhang, Z. K.; Fu, L. X.; Wang, G. X. Gel polymer electrolyte with alkaline aquatic colloidal graphene for flexible and rechargeable zinc air batteries. Electrochim. Acta 2023, 448, 142195.

[144]

Qu, S. X.; Liu, B.; Wu, J. K.; Zhao, Z. Q.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Kirigami-inspired flexible and stretchable zinc-air battery based on metal-coated sponge electrodes. ACS Appl. Mater. Interfaces 2020, 12, 54833–54841.

[145]

Zhao, S. Y.; Xia, D. W.; Li, M. H.; Cheng, D. Y.; Wang, K. L.; Meng, Y. S.; Chen, Z.; Bae, J. Self-healing and anti-CO2 hydrogels for flexible solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 12033–12041.

[146]

Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, Y.; Guo, Z. J.; Zhai, S.; Yu, J.; Zhi, C. Y.; Ni, M. All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chem. Eng. J. 2022, 430, 132718.

[147]

Zhang, Y. A.; Chen, Y. J.; Li, X.; Alfred, M.; Li, D. W.; Huang, F. L.; Wei, Q. F. Bacterial cellulose hydrogel: A promising electrolyte for flexible zinc-air batteries. J. Power Sources 2021, 482, 228963

[148]

Zhao, N. N.; Wu, F.; Xing, Y.; Qu, W. J.; Chen, N.; Shang, Y. X.; Yan, M. X.; Li, Y. J.; Li, L.; Chen, R. J. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15537–15542.

[149]

Yang, Y.; Wang, T.; Guo, Y.; Liu, P. G.; Han, X. F.; Wu, D. L. Agar-PVA/GO double network gel electrolyte for high performance flexible zinc-air batteries. Mater. Today Chem. 2023, 29, 101384.

[150]

Zuo, Y. Y.; Wang, K. L.; Wei, M. H.; Zhang, P. F.; Zhao, S. Y.; Pei, P. C.; Wang, H. W.; Chen, Z.; Shang, N. An Agar gel modulation with melamine foam skeleton for flexible Zn-air batteries. Chem. Eng. J. 2023, 452, 139301.

[151]

Xue, Y. C.; Zhou, H.; Wang, K. Y.; Zhu, H. X.; Zhuang, L. Z.; Xu, Z.; He, H. Tailoring of an ultralow temperature adaptive cellulose nanofiber-based flexible zinc-air battery with long cycle life. J. Mater. Chem. A 2022, 10, 22730–22741.

[152]

Li, Z. Y.; Li, X.; Jiang, Y. F.; Ding, Q. J.; Han, W. J. Nanocellulose composite gel with high ionic conductivity and long service life for flexible zinc-air battery. Polym. Test. 2021, 104, 107380.

[153]

Jiang, D. Q.; Wang, H. Y.; Wu, S.; Sun, X. Y.; Li, J. Flexible zinc-air battery with high energy efficiency and freezing tolerance enabled by DMSO-based organohydrogel electrolyte. Small Methods 2022, 6, 2101043.

[154]

Lyu, J. Y.; Zhou, Q. Y.; Wang, H. F.; Xiao, Q.; Qiang, Z.; Li, X. P.; Wen, J.; Ye, C. H.; Zhu, M. F. Mechanically strong, freeze-resistant, and ionically conductive organohydrogels for flexible strain sensors and batteries. Adv. Sci. 2023, 10, 2206591.

[155]

Zhong, X. W.; Zheng, Z. Y.; Xu, J. H.; Xiao, X.; Sun, C. B.; Zhang, M. T.; Ma, J. B.; Xu, B. M.; Yu, K.; Zhang, X. et al. Flexible zinc-air batteries with ampere-hour capacities and wide-temperature adaptabilities. Adv. Mater. 2023, 35, 2209980.

[156]

Neo, W. T.; Ye, Q.; Chua, M. H.; Zhu, Q.; Xu, J. W. Solution-processable copolymers based on triphenylamine and 3,4-ethylenedioxythiophene: Facile synthesis and multielectrochromism. Macromol. Rapid Commun. 2020, 41, 2000156.

[157]

Vo, T. P.; Chua, M. H.; Ang, S. J.; Chin, K. L. O.; Soo, X. Y. D.; Png, Z. M.; Tam, T. L. D.; Zhu, Q.; Procter, D. J.; Xu, J. W. Pyrrolo[3,4-c]pyridine-1,2-dione: A new electron acceptor for electrochromic conjugated polymers. Polym. Chem. 2022, 13, 6512–6524.

[158]

Chua, M. H.; Toh, S. H. G.; Ong, P. J.; Png, Z. M.; Zhu, Q.; Xiong, S. X.; Xu, J. W. Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups. Polym. Chem. 2022, 13, 967–981.

[159]

Long, L. Z.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069.

[160]

Rase, D.; Illathvalappil, R.; Singh, H. D.; Shekhar, P.; Leo, L. S.; Chakraborty, D.; Haldar, S.; Shelke, A.; Ajithkumar, T. G.; Vaidhyanathan, R. Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications. Nanoscale Horiz. 2023, 8, 224–234.

[161]

Png, Z. M.; Soo, X. Y. D.; Chua, M. H.; Ong, P. J.; Xu, J. W.; Zhu, Q. Triazine derivatives as organic phase change materials with inherently low flammability. J. Mater. Chem. A 2022, 10, 3633–3641.

[162]

Yong, X.; Wu, G.; Shi, W.; Wong, Z. M.; Deng, T. Q.; Zhu, Q.; Yang, X. P.; Wang, J. S.; Xu, J. W.; Yang, S. W. Theoretical search for high-performance thermoelectric donor–acceptor copolymers: The role of super-exchange couplings. J. Mater. Chem. A 2020, 8, 21852–21861.

[163]

Soo, X. Y. D.; Png, Z. M.; Wang, X. Z.; Chua, M. H.; Ong, P. J.; Wang, S. X.; Li, Z. B.; Chi, D. Z.; Xu, J. W.; Loh, X. J. et al. Rapid UV-curable form-stable polyethylene-glycol-based phase change material. ACS Appl. Polym. Mater. 2022, 4, 2747–2756.

[164]

Lee, J. J. C.; Lim, N. J. X.; Wang, P.; Liu, H. F.; Wang, S. X.; Lee, C. L. K.; Kai, D.; Wei, F. X.; Ji, R.; Tan, B. H. Silicon-containing additives in encapsulation of phase change materials for thermal energy storage. World Sci. Annu. Rev. Funct. Mater. 2023, 1, 2230007.

[165]

Wu, W. Y.; Yeo, G. M. D.; Wang, S. X.; Liu, Z. Y.; Loh, X. J.; Zhu, Q. Recent progress in polyethylene-enhanced organic phase change composite materials for energy management. Chem.—Asian J. 2023, 18, e202300391.

[166]

Soo, X. Y.; Muiruri, J. K.; Yeo, J. C. C.; Png, Z. M.; Sng, A.; Xie, H. Q.; Ji, R.; Wang, S. X.; Liu, H. F.; Xu, J. W. et al. Polyethylene glycol/polylactic acid block co-polymers as solid-solid phase change materials. SmartMat 2023, 4, e1188.

[167]

Tan, M. J.; Li, B.; Chee, P.; Ge, X. M.; Liu, Z. L.; Zong, Y.; Loh, X. J. Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. J. Power Sources 2018, 400, 566–571.

[168]

Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, Jr. W.; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. 2021, 133, 7289–7295.

[169]
Zhu, Q.; Ong, P. J.; Goh, S. H. A.; Yeo, R. J.; Wang, S. X.; Liu, Z. Y.; Loh, X. J. Recent advances in graphene-based phase change composites for thermal energy storage and management. Nano Mater. Sci., in press, https://doi.org/10.1016/j.nanoms.2023.09.003.
[170]

Soo, X. Y. D.; Tan, S. Y.; Cheong, A. K. H.; Xu, J. W.; Liu, Z. Y.; Loh, X. J.; Zhu, Q. Electrospun PEO/PEG fibers as potential flexible phase change materials for thermal energy regulation. Exploration 2024, 4, 20230016.

[171]

Wang, X. Z.; Huang, X. H.; Wong, Z. M.; Suwardi, A.; Zheng, Y.; Wei, F. X.; Wang, S. J.; Tan, T. L.; Wu, G.; Zhu, Q. et al. Gallium-doped zinc oxide nanostructures for tunable transparent thermoelectric films. ACS Appl. Nano Mater. 2022, 5, 8631–8639.

[172]

Liang, R. M.; Yang, X. C.; Yew, P. Y. M.; Sugiarto, S.; Zhu, Q.; Zhao, J. M.; Loh, X. J.; Zheng, L.; Kai, D. PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J. Nanobiotechnol. 2022, 20, 327.

[173]

Wei, F. X.; Cheng, B. S.; Chew, L. T.; Lee, J. J.; Cheong, K. H.; Wu, J.; Zhu, Q.; Tan, C. C. Grain distribution characteristics and effect of diverse size distribution on the Hall–Petch relationship for additively manufactured metal alloys. J. Mater. Res. Technol. 2022, 20, 4130–4136.

[174]

Lu, Y. Y.; Zhu, T. Y.; Xu, N. S.; Huang, K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910.

[175]

Wang, S. X.; Muiruri, J. K.; Soo, X. Y. D.; Liu, S. L.; Thitsartarn, W.; Tan, B. H.; Suwardi, A.; Li, Z. B.; Zhu, Q.; Loh, X. J. Bio-polypropylene and polypropylene-based biocomposites: Solutions for a sustainable future. Chem.—Asian J. 2023, 18, e202200972.

[176]

Muiruri, J. K.; Yeo, J. C. C.; Soo, X. Y. D.; Wang, S. X.; Liu, H. F.; Kong, J. H.; Cao, J.; Tan, B. H.; Suwardi, A.; Li, Z. B. et al. Recent advances of sustainable short-chain length polyhydroxyalkanoates (Scl-PHAs)-plant biomass composites. Eur. Polym. J. 2023, 187, 111882.

[177]

Zhu, Q.; Yildirim, E.; Wang, X. Z.; Kyaw, A. K. K.; Tang, T.; Soo, X. Y. D.; Wong, Z. M.; Wu, G.; Yang, S. W.; Xu, J. W. Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT:PSS: Experimental and modelling evidence. Mol. Syst. Des. Eng. 2020, 5, 976–984.

[178]

Bai, P.; Bazant, M. Z. Charge transfer kinetics at the solid–solid interface in porous electrodes. Nat. Commun. 2014, 5, 3585.

[179]

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

[180]

Yu, J.; Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries. Adv. Mater. 2020, 32, 1908488.

[181]

Li, T. C.; Lim, Y. V.; Xie, X. S.; Li, X. L.; Li, G. J.; Fang, D. L.; Li, Y. F.; Ang, Y. S.; Ang, L. K.; Yang, H. Y. ZnSe modified zinc metal anodes: Toward enhanced zincophilicity and ionic diffusion. Small 2021, 17, 2101728.

[182]

Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

[183]

Park, D. J.; Aremu, E. O.; Ryu, K. S. Bismuth oxide as an excellent anode additive for inhibiting dendrite formation in zinc-air secondary batteries. Appl. Surf. Sci. 2018, 456, 507–514.

[184]

Xiao, J. H.; Zhang, X. X.; Fan, H. Y.; Zhao, Y. X.; Su, Y.; Liu, H. W.; Li, X. Z.; Su, Y. P.; Yuan, H.; Pan, T. et al. Stable solid electrolyte interphase in situ formed on magnesium-metal anode by using a perfluorinated alkoxide-based all-magnesium salt electrolyte. Adv. Mater. 2022, 34, 2203783.

[185]

Qin, Y.; Li, H. F.; Han, C. P.; Mo, F. N.; Wang, X. Chemical Welding of the electrode–electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 2022, 34, 2207118.

[186]

Han, D. L.; Wu, S. C.; Zhang, S. W.; Deng, Y. Q.; Cui, C. J.; Zhang, L. N.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, 2001736.

[187]

Peng, Y. M.; Lai, C. G.; Zhang, M.; Liu, X. B.; Yin, Y. H.; Li, Y. S.; Wu, Z. P. Zn-Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery. J. Power Sources 2022, 526, 231173.

[188]

Tang, K.; Fu, J. M.; Wu, M. Z.; Hua, T.; Liu, J.; Song, L.; Hu, H. B. Synergetic chemistry and interface engineering of hydrogel electrolyte to strengthen durability of solid-state Zn-air batteries. Small Methods 2022, 6, 2101276.

[189]

Zhao, X. Q.; Fan, B. M.; Qiao, N.; Soomro, R. A.; Zhang, R.; Xu, B. Stabilized Ti3C2T x -doped 3D vesicle polypyrrole coating for efficient protection toward copper in artificial seawater. Appl. Surf. Sci. 2024, 642, 158639.

[190]

Yan, Z. Y.; Hu, Q. S.; Jiang, F.; Lin, S. B.; Li, R. S.; Chen, S. J. Mechanism and technology evaluation of a novel alternating-arc-based directed energy deposition method through polarity-switching self-adaptive shunt. Addit. Manuf. 2023, 67, 103504.

[191]

Zheng, B. R.; Lin, D. L.; Qi, S. J.; Hu, Y. Z.; Jin, Y. Z.; Chen, Q. L.; Bian, D. L.; Yan, R. H. Turbulent skin-friction drag reduction by annular dielectric barrier discharge plasma actuator. Phys. Fluids 2023, 35, 125129.

[192]

Zhong, Y. J.; Xu, X. M.; Liu, P. Y.; Ran, R.; Jiang, S. P.; Wu, H. W.; Shao, Z. P. A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 2020, 10, 2002992.

Nano Research
Pages 6058-6079
Cite this article:
Wu J, Wu W-Y, Wang S, et al. Polymer electrolytes for flexible zinc-air batteries: Recent progress and future directions. Nano Research, 2024, 17(7): 6058-6079. https://doi.org/10.1007/s12274-024-6555-z
Topics:

663

Views

3

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 17 December 2023
Revised: 24 January 2024
Accepted: 05 February 2024
Published: 30 April 2024
© Tsinghua University Press, corrected publication 2024
Return