AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-strength, stretchable, and NIR-induced rapid self-healing polyurethane nanocomposites with bio-inspired hybrid cross-linked network

Tianbo DengJunyuan ZhuHe ZhaoBinbin Xu( )Ling Zhang( )Chunzhong Li( )
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
Show Author Information

Graphical Abstract

Inspired by connective tissue, a hybrid cross-linked network is proposed for achieving integrated high strength, toughness, and rapid self-healing graphene oxide/polyurethane nanocomposites.

Abstract

Stretchable and self-healable materials with excellent mechanical performance hold great promise for applications in flexible functional devices. Despite rapid developments, achieving high mechanical strength, extreme stretchability, and rapid self-healing capability in self-healing materials remains challenging. Here, inspired by the hierarchical structure and unique network of connective tissue, we fabricated a class of bionic nanocomposites with high stretchability, outstanding mechanical strength, and rapid self-healing ability by integrating the bottlebrush copolymer functionalized graphene oxide (BCP@GO) into a polyurethane (PU) matrix via in-situ polymerization. The bottlebrush copolymer (BCP) acted as a bond bridge for linking the GO nanosheets (noncovalent interaction) and PU chains (covalent and hydrogen-bond interaction). The covalent interactions were responsible for providing high mechanical strength, and the abundant hydrogen-bond-based cross-links realized extreme stretchability and rapid self-healing capability. The resultant BCP@GO/PU nanocomposite with only 0.5 wt.% GO loading exhibited excellent mechanical properties (tensile strength increased by 52.1%, up to 28.6 MPa; toughness increased by 70.8%, up to 256.9 MJ/m3; elongation at break increased by 12.8%, up to 1847.2%), exceptional rapid and efficient self-healing ability (~ 99% with 20 s NIR irradiation), as well as superior shape memory and recyclable capability. This study develops a new strategy for designing high-performance self-healing nanocomposites and unfolds broad application prospects in smart materials.

Electronic Supplementary Material

Download File(s)
6559_ESM.pdf (5.4 MB)

References

[1]

Benas, J. S.; Liang, F. C.; Venkatesan, M.; Yan, Z. L.; Chen, W. C.; Han, S. T.; Zhou, Y.; Kuo, C. C. Recent development of sustainable self-healable electronic skin applications, a review with insight. Chem. Eng. J. 2023, 466, 142945.

[2]

Liu, J.; Zhang, L.; Wang, N.; Zhao, H.; Li, C. Z. Nanofiber-reinforced transparent, tough, and self-healing substrate for an electronic skin with damage detection and program-controlled autonomic repair. Nano Energy 2022, 96, 107108.

[3]

Peng, Y.; Gu, S. Y.; Wu, Q.; Xie, Z. T.; Wu, J. R. High-performance self-healing polymers. Acc. Mater. Res. 2023, 4, 323–333.

[4]

Xu, J. H.; Li, Y. K.; Liu, T.; Wang, D.; Sun, F. Y.; Hu, P.; Wang, L.; Chen, J. Y.; Wang, X. B.; Yao, B. W. et al. Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. 2023, 35, 2300937.

[5]

Park, S.; Thangavel, G.; Parida, K.; Li, S. H.; Lee, P. S. A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv. Mater. 2019, 31, 1805536.

[6]

Li, F. L.; Xu, Z. F.; Hu, H.; Kong, Z. Y.; Chen, C.; Tian, Y.; Zhang, W. W.; Ying, W. B.; Zhang, R. Y.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly e-skin. Chem. Eng. J. 2021, 410, 128363.

[7]

Guan, T. T.; Wang, X. H.; Zhu, Y. L.; Qian, L.; Lu, Z. Y.; Men, Y. F.; Li, J.; Wang, Y. T.; Sun, J. Q. Mechanically robust skin-like poly(urethane-urea) elastomers cross-linked with hydrogen-bond arrays and their application as high-performance ultrastretchable conductors. Macromolecules 2022, 55, 5816–5825.

[8]

Zhou, J. L.; Yuan, Z. H.; Liu, H.; He, W. X.; Yu, K. J.; Chen, K. L. Bio-inspired self-healing flexible films with pomegranate-shaped nanosphere loaded graphene for electromagnetic interference shielding and superhydrophobicity performances. J. Mater. Chem. A 2022, 10, 24331–24344.

[9]

Song, C. J.; Zhang, Y. H.; Bao, J. Y.; Wang, Z. Z.; Zhang, L. Y.; Sun, J.; Lan, R. C.; Yu, Z.; Zhu, S. Q.; Yang, H. Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network. Adv. Funct. Mater. 2023, 33, 2213771.

[10]

Wu, H.; Zhu, Z. L.; Gao, N. J.; Ma, L.; Li, J. W.; Liu, F. C. The biomimetic design provides efficient self-healing of ultrahigh-tough and damage-warning bio-based elastomer for protective clothing of metals. Nano Res. 2023, 16, 10587–10596.

[11]

Wang, S.; Fang, Y. L.; He, H.; Zhang, L.; Li, C. A.; Ouyang, J. Y. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv. Funct. Mater. 2021, 31, 2007495.

[12]

Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y. Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater. 2022, 14, 10.

[13]

Cao, J.; Lu, C. H.; Zhuang, J.; Liu, M. X.; Zhang, X. X.; Yu, Y. M.; Tao, Q. C. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew. Chem., Int. Ed. 2017, 56, 8795–8800.

[14]

Liu, X. H.; Su, G. H.; Guo, Q. Q.; Lu, C. H.; Zhou, T.; Zhou, C. L.; Zhang, X. X. Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity. Adv. Funct. Mater. 2018, 28, 1706658.

[15]

Wang, X. Y.; Xu, J.; Zhang, Y. M.; Wang, T. M.; Wang, Q. H.; Li, S.; Yang, Z. H.; Zhang, X. R. A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission. Nat. Commun. 2023, 14, 4712.

[16]

Chen, J.; Gao, Y. Y.; Shi, L.; Yu, W.; Sun, Z. J.; Zhou, Y. F.; Liu, S.; Mao, H.; Zhang, D. Y.; Lu, T. Q. et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat. Commun. 2022, 13, 4868.

[17]

Guo, R.; Zhang, Q.; Wu, Y. S.; Chen, H. B.; Liu, Y. H.; Wang, J. J.; Duan, X. L.; Chen, Q.; Ge, Z. S.; Zhang, Y. F. Extremely strong and tough biodegradable poly(urethane) elastomers with unprecedented crack tolerance via hierarchical hydrogen-bonding interactions. Adv. Mater. 2023, 35, 2212130.

[18]

Xu, Y. W.; Zhou, S.; Wu, Z. H.; Yang, X. Y.; Li, N.; Qin, Z. H.; Jiao, T. F. Room-temperature self-healing and recyclable polyurethane elastomers with high strength and superior robustness based on dynamic double-crosslinked structure. Chem. Eng. J. 2023, 466, 143179.

[19]

Yanagisawa, Y.; Nan, Y. L.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2017, 359, 72–76.

[20]

Yang, W. J.; Zhu, Y. L.; Liu, T. X.; Puglia, D.; Kenny, J. M.; Xu, P. W.; Zhang, R.; Ma, P. M. Multiple structure reconstruction by dual dynamic crosslinking strategy inducing self-reinforcing and toughening the polyurethane/nanocellulose elastomers. Adv. Funct. Mater. 2023, 33, 2213294.

[21]

Li, T. Q.; Fang, X.; Pang, Q.; Huang, W. M.; Sun, J. Q. Healable and shape editable supercapacitors based on shape memory polyurethanes. J. Mater. Chem. A 2019, 7, 17456–17465.

[22]

Li, Z. Q.; Zhu, Y. L.; Niu, W. W.; Yang, X.; Jiang, Z. Y.; Lu, Z. Y.; Liu, X. K.; Sun, J. Q. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 2021, 33, 2101498.

[23]

Wang, Y. Y.; Shu, R.; Zhang, X. X. Strong, supertough and self-healing biomimetic layered nanocomposites enabled by reversible interfacial polymer chain sliding. Angew. Chem., Int. Ed. 2023, 62, e202303446.

[24]

Lotfi Mayan Sofla, R.; Rezaei, M.; Babaie, A.; Nasiri, M. Preparation of electroactive shape memory polyurethane/graphene nanocomposites and investigation of relationship between rheology, morphology and electrical properties. Composites B Eng. 2019, 175, 107090.

[25]

Zhou, J. L.; Liu, H.; Sun, Y. Y.; Wang, C. X.; Chen, K. L. Self-healing titanium dioxide nanocapsules-graphene/multi-branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics. Adv. Funct. Mater. 2021, 31, 2011133.

[26]

Du, W. N.; Jin, Y.; Shi, L. J.; Shen, Y. C.; Lai, S. Q.; Zhou, Y. T. NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Composites B Eng. 2020, 195, 108092.

[27]

Zhu, X. B.; Zhang, W. J.; Lu, G. M.; Zhao, H. C.; Wang, L. P. Ultrahigh mechanical strength and robust room-temperature self-healing properties of a polyurethane-graphene oxide network resulting from multiple dynamic bonds. ACS Nano 2022, 16, 16724–16735.

[28]

Zhou, Z. Q.; Wang, X. T.; Yu, H. C.; Yu, C. L.; Zhang, F. A. Dynamic cross-linked polyurea/polydopamine nanocomposites for photoresponsive self-healing and photoactuation. Macromolecules 2022, 55, 2193–2201.

[29]

Li, Q. Y.; He, H.; Ye, X.; Guan, F. R.; Ai, Y. X.; Shen, Y.; Zhang, C. NIR light-induced functionalized MXene as a dynamic-crosslinker for reinforced polyurethane composites with shape memory and self-healing. Chem. Eng. J. 2023, 475, 146500.

[30]

Tian, W.; Wang, S. L.; Guo, Z. L.; Yu, H. T.; Tian, L. M. Antifouling and anticorrosion function of repeatable self-healing polyurethane composite inspired by the self-healing principle of cartilage tissue. Chem. Eng. J. 2023, 462, 142346.

[31]

Habibpour, S.; Um, J. G.; Jun, Y. S.; Bhargava, P.; Park, C. B.; Yu, A. P. Structural impact of graphene nanoribbon on mechanical properties and anti-corrosion performance of polyurethane nanocomposites. Chem. Eng. J. 2021, 405, 126858.

[32]

Xu, W. Q.; Lv, Y. D.; Kong, M. Q.; Huang, Y. J.; Yang, Q.; Li, G. X. In-situ polymerization of eco-friendly waterborne polyurethane/polydopamine-coated graphene oxide composites towards enhanced mechanical properties and UV resistance. J. Cleaner Prod. 2022, 373, 133942

[33]

Wang, Y. Y.; Huang, X.; Zhang, X. X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 2021, 12, 1291.

[34]

Zhu, X. B.; Zheng, W. R.; Zhao, H. C.; Wang, L. P. Non-covalent assembly of a super-tough, highly stretchable and environmentally adaptable self-healing material inspired by nacre. J. Mater. Chem. A 2021, 9, 20737–20747.

[35]

Zhang, C. Q.; Mcadams II, D. A.; Grunlan, J. C. Nano/micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures. Adv. Mater. 2016, 28, 6292–6321.

[36]

Qi, M.; Yang, R. Q.; Wang, Z.; Liu, Y. T.; Zhang, Q. C.; He, B.; Li, K. W.; Yang, Q.; Wei, L.; Pan, C. F. et al. Bioinspired self-healing soft electronics. Adv. Funct. Mater. 2023, 33, 2214479.

[37]

Freedman, B. R.; Mooney, D. J. Biomaterials to mimic and heal connective tissues. Adv. Mater. 2019, 31, 1806695.

[38]

Li, W. H.; Liu, H.; Wang, H.; Chen, Y. W.; Peng, Y.; Wu, H. T.; Hou, Y. J.; Huang, Y.; Yuan, Z. Y.; Ye, B. J. et al. Biomimetic hybrid networks with excellent toughness and self-healing ability in the glassy state. Chem. Mater. 2023, 35, 682–691.

[39]

Sun, Y. W.; Liu, Z.; Chen, F.; Xu, M.; Zhang, J. L.; Li, W. Hierarchical cross-linked poly(caprolactone-co-urethane) toward connective tissue-like properties and multifunctional integration. Chem. Mater. 2019, 31, 9295–9306.

[40]

Zhang, S. H.; Jiang, Z. Y.; Shi, J. F.; Wang, X. Y.; Han, P. P.; Qian, W. L. An efficient, recyclable, and stable immobilized biocatalyst based on bioinspired microcapsules-in-hydrogel scaffolds. ACS Appl. Mater. Interfaces 2016, 8, 25152–25161.

[41]

Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.; Jung, H. J.; Park, J. Y. et al. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater. 2018, 30, 1803267.

[42]

Kim, H.; Kim, D. W.; Vasagar, V.; Ha, H.; Nazarenko, S.; Ellison, C. J. Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 2018, 28, 1803172.

[43]

Nouri, N.; Rezaei, M.; Mayan Sofla, R. L.; Babaie, A. Synthesis of reduced octadecyl isocyanate-functionalized graphene oxide nanosheets and investigation of their effect on physical, mechanical, and shape memory properties of polyurethane nanocomposites. Compos. Sci. Technol. 2020, 194, 108170.

[44]

Chen, S. L.; Shen, B.; Zhang, F.; Hong, H.; Pan, J. H. Mussel-inspired graphene film with enhanced durability as a macroscale solid lubricant. ACS Appl. Mater. Interfaces 2019, 11, 31386–31392.

[45]

Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 2023, 33, 2211985.

[46]

Du, W. N.; Jin, Y.; Lai, S. Q.; Shi, L. J.; Shen, Y. C.; Yang, H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Composites A Appl. Sci. Manuf. 2020, 128, 105686.

[47]

Dai, S. Y.; Yue, S. S.; Ning, Z. B.; Jiang, N.; Gan, Z. H. Polydopamine nanoparticle-reinforced near-infrared light-triggered shape memory polycaprolactone-polydopamine polyurethane for biomedical implant applications. ACS Appl. Mater. Interfaces 2022, 14, 14668–14676.

[48]

Liu, X. C.; Wu, J. Y.; Tang, Z. L.; Wu, J. X.; Huang, Z. Y.; Yin, X. S.; Du, J. H.; Lin, X. F.; Lin, W. J.; Yi, G. B. Photoreversible bond-based shape memory polyurethanes with light-induced self-healing, recyclability, and 3d fluorescence encryption. ACS Appl. Mater. Interfaces 2022, 14, 33829–33841.

[49]

Li, T. Q.; Li, Y.; Wang, X. H.; Li, X.; Sun, J. Q. Thermally and near-infrared light-induced shape memory polymers capable of healing mechanical damage and fatigued shape memory function. ACS Appl. Mater. Interfaces 2019, 11, 9470–9477.

[50]

Wang, J.; Lin, X.; Wang, R. G.; Lu, Y. L.; Zhang, L. Q. Self-healing, photothermal-responsive, and shape memory polyurethanes for enhanced mechanical properties of 3D/4D printed objects. Adv. Funct. Mater. 2023, 33, 2211579.

[51]

Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

[52]

Zhang, Y. F.; Xu, Z. S.; Yuan, Y.; Liu, C. Y.; Zhang, M.; Zhang, L. Q.; Wan, P. B. Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human-machine interfacing. Adv. Funct. Mater. 2023, 33, 2300299.

[53]

Chien, Y. C.; Chuang, W. T.; Jeng, U. S.; Hsu, S. H. Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers. ACS Appl. Mater. Interfaces 2017, 9, 5419–5429.

[54]

Zhang, Y. C.; Hu, J. L.; Zhao, X.; Xie, R. Q.; Qin, T. W.; Ji, F. L. Mechanically robust shape memory polyurethane nanocomposites for minimally invasive bone repair. ACS Appl. Bio Mater. 2019, 2, 1056–1065.

Nano Research
Pages 6353-6361
Cite this article:
Deng T, Zhu J, Zhao H, et al. High-strength, stretchable, and NIR-induced rapid self-healing polyurethane nanocomposites with bio-inspired hybrid cross-linked network. Nano Research, 2024, 17(7): 6353-6361. https://doi.org/10.1007/s12274-024-6559-8
Topics:

389

Views

2

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 30 December 2023
Revised: 30 January 2024
Accepted: 08 February 2024
Published: 01 April 2024
© Tsinghua University Press 2024
Return