AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cyclodextrin nanofilms with hydrophobic and hydrophilic channels for solvent permeation and molecular sieving

Kai Zhang1,2Yu Dai1Yongli Shi2Zhaoxin Zhang2Linji Li2Xiaojin Zhang1( )Fan Xia1
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Henan Academy of Geology, Zhengzhou 450052, China
Show Author Information

Graphical Abstract

Nanofilms with hydrophobic channels (cyclodextrin inner cavity) and hydrophilic channels (cyclodextrin outer space) were prepared by interfacial polymerization. Nanofilms have high permeability to polar and non-polar solvents, and can distinguish molecules with almost the same molecular weight but different shapes.

Abstract

Nanofilms that can fast permeate solvents and accurately sieve molecules are of significant importance for separation. A promising strategy is to align the inner cavities of macrocycles into the channels within nanofilms, and control the channel size by selecting the macrocycles. However, the channels outside the macrocycles are ignored. Here, we prepare nanofilms with hydrophobic channels (cyclodextrin inner cavity) and hydrophilic channels (cyclodextrin outer space) through interfacial polymerization of azobenzene-4,4’-dicarbonyl dichloride and amino-functionalized β-cyclodextrin. By utilizing the significant geometric changes caused by the photoisomerization of azobenzene, nanofilms with adjustable hydrophilic channel sizes were obtained. Our nanofilms have high permeability to polar and non-polar solvents, and can distinguish molecules with almost the same molecular weight but different shapes. This work expands the development of next-generation nanofilms generated through interfacial polymerization by incorporating rational molecular design.

Electronic Supplementary Material

Download File(s)
6560_ESM.pdf (2.5 MB)

References

[1]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[2]

Wang, H. J.; Wang, M. D.; Liang, X.; Yuan, J. Q.; Yang, H.; Wang, S. Y.; Ren, Y. X.; Wu, H.; Pan, F. S.; Jiang, Z. Y. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 2021, 50, 5468–5516.

[3]

Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.

[4]

Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530.

[5]

Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

[6]

He, A.; Jiang, Z. W.; Wu, Y.; Hussain, H.; Rawle, J.; Briggs, M. E.; Little, M. A.; Livingston, A. G.; Cooper, A. I. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 2022, 21, 463–470.

[7]

Yuan, Y. D.; Dong, J. Q.; Liu, J.; Zhao, D. H.; Wu, H.; Zhou, W.; Gan, H. X.; Tong, Y. W.; Jiang, J. W.; Zhao, D. Porous organic cages as synthetic water channels. Nat. Commun. 2020, 11, 4927.

[8]

Song, Q. L.; Jiang, S.; Hasell, T.; Liu, M.; Sun, S. J.; Cheetham, A. K.; Sivaniah, E.; Cooper, A. I. Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 2016, 28, 2629–2637.

[9]

Wang, M. D.; Zhang, P. H.; Liang, X.; Zhao, J. Y.; Liu, Y. W.; Cao, Y.; Wang, H. J.; Chen, Y.; Zhang, Z. M.; Pan, F. S. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 2022, 5, 518–526.

[10]

Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

[11]

Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

[12]

Zhou, S.; Shekhah, O.; Jia, J. T.; Czaban-Jóźwiak, J.; Bhatt, P. M.; Ramírez, A.; Gascon, J.; Eddaoudi, M. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons. Nat. Energy 2021, 6, 882–891.

[13]

Lu, J.; Zhang, H. C.; Hou, J.; Li, X. Y.; Hu, X. Y.; Hu, Y. X.; Easton, C. D.; Li, Q. Y.; Sun, C. H.; Thornton, A. W. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 2020, 19, 767–774.

[14]

Liu, Q.; Miao, Y. R.; Villalobos, L. F.; Li, S. X.; Chi, H. Y.; Chen, C. L.; Vahdat, M. T.; Song, S. Q.; Babu, D. J.; Hao, J. et al. Unit-cell-thick zeolitic imidazolate framework films for membrane application. Nat. Mater. 2023, 22, 1387–1393.

[15]

Liu, J. T.; Hua, D.; Zhang, Y.; Japip, S.; Chung, T. S. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules. Adv. Mater. 2018, 30, 1705933.

[16]

Jiang, Z. W.; Dong, R. J.; Evans, A. M.; Biere, N.; Ebrahim, M. A.; Li, S. Y.; Anselmetti, D.; Dichtel, W. R.; Livingston, A. G. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 2022, 609, 58–64.

[17]

Zhu, B.; Shao, R. Q.; Li, N.; Min, C. Y.; Liu, S. K.; Xu, Z. W.; Qian, X. M.; Wang, L. J. Progress of cyclodextrin based-membranes in water treatment: Special 3D bowl-like structure to achieve excellent separation. Chem. Eng. J. 2022, 449, 137013.

[18]

Wang, Y.; Yang, T.; Bao, C. Y.; Xu, X. L.; Zhang, J. Y.; Peng, B.; Luo, X. Z.; Wang, B. Y.; Luo, C.; Wang, Y. J. et al. Charged cyclodextrin membranes for precise molecular sieving. J. Mater. Chem. A 2022, 10, 22301–22310.

[19]

Villalobos, L. F.; Huang, T. F.; Peinemann, K. V. Cyclodextrin films with fast solvent transport and shape-selective permeability. Adv. Mater. 2017, 29, 1606641.

[20]

Huang, T. F.; Puspasari, T.; Nunes, S. P.; Peinemann, K. V. Ultrathin 2D-layered cyclodextrin membranes for high-performance organic solvent nanofiltration. Adv. Funct. Mater. 2020, 30, 1906797.

[21]

Liu, J. T.; Wang, S. F.; Huang, T. F.; Manchanda, P.; Abou-Hamad, E.; Nunes, S. P. Smart covalent organic networks (CONs) with “on-off-on” light-switchable pores for molecular separation. Sci. Adv. 2020, 6, eabb3188.

[22]

Moradi, M.; Opara, N. L.; Tulli, L. G.; Wäckerlin, C.; Dalgarno, S. J.; Teat, S. J.; Baljozovic, M.; Popova, O.; van Genderen, E.; Kleibert, A. et al. Supramolecular architectures of molecularly thin yet robust free-standing layers. Sci. Adv. 2019, 5, eaav4489.

[23]

Cheng, N.; Chen, Y.; Wu, X.; Liu, Y. 2D organic–inorganic nanosheets via self-assembly of a pillar[6]arene and polyoxometalate for enhanced degradation efficiency. Chem. Commun. 2018, 54, 6284–6287

[24]

Bandara, H. M. D.; Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825.

[25]

Moosa, B.; Alimi, L. O.; Shkurenko, A.; Fakim, A.; Bhatt, P. M.; Zhang, G. W.; Eddaoudi, M.; Khashab, N. M. A polymorphic azobenzene cage for energy-efficient and highly selective p-xylene separation. Angew. Chem., Int. Ed. 2020, 59, 21367–21371.

[26]

Das, G.; Prakasam, T.; Addicoat, M. A.; Sharma, S. K.; Ravaux, F.; Mathew, R.; Baias, M.; Jagannathan, R.; Olson, M. A.; Trabolsi, A. Azobenzene-equipped covalent organic framework: Light-operated reservoir. J. Am. Chem. Soc. 2019, 141, 19078–19087.

[27]

Wang, Z. B.; Knebel, A.; Grosjean, S.; Wagner, D.; Bräse, S.; Wöll, C.; Caro, J.; Heinke, L. Tunable molecular separation by nanoporous membranes. Nat. Commun. 2016, 7, 13872.

[28]

Zhang, J.; Wang, L. B.; Li, N.; Liu, J. F.; Zhang, W.; Zhang, Z. B.; Zhou, N. C.; Zhu, X. L. A novel azobenzene covalent organic framework. CrystEngComm 2014, 16, 6547–6551.

[29]

Meng, X. S.; Gui, B.; Yuan, D. Q.; Zeller, M.; Wang, C. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci. Adv. 2016, 2, e1600480.

[30]

Heinke, L.; Wöll, C. Surface-mounted metal-organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater. 2019, 31, 1806324.

[31]

Chen, X.; Fang, S. Y.; Xue, P.; Huang, J. M.; Tang, M.; Wang, Z. B. Reversible regulation of polar gas molecules by azobenzene-based photoswitchable metal-organic framework thin films. Molecules 2023, 28, 877.

[32]

Lin, I. H.; Cheng, C. C.; Li, K. F.; Chen, J. K.; Chiu, C. W.; Chang, F. C. Nucleobase-grafted supramolecular polymers for tuning the surface properties. Polym. Chem. 2014, 5, 702–705.

[33]

Karan, S.; Jiang, Z. W.; Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015, 348, 1347–1351.

[34]

Joseph, N.; Thomas, J.; Ahmadiannamini, P.; Van Gorp, H.; Bernstein, R.; De Feyter, S.; Smet, M.; Dehaen, W.; Hoogenboom, R.; Vankelecom, I. F. J. Ultrathin single bilayer separation membranes based on hyperbranched sulfonated poly(aryleneoxindole). Adv. Funct. Mater. 2017, 27, 1605068.

[35]

Li, X. F.; Vandezande, P.; Vankelecom, I. F. J. Polypyrrole modified solvent resistant nanofiltration membranes. J. Membr. Sci. 2008, 320, 143–150.

[36]

Fritsch, D.; Merten, P.; Heinrich, K.; Lazar, M.; Priske, M. High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). J. Membr. Sci. 2012, 401–402, 222–231

[37]

Xu, Y. C.; You, F. J.; Sun, H. G.; Shao, L. Realizing mussel-inspired polydopamine selective layer with strong solvent resistance in nanofiltration toward sustainable reclamation. ACS Sustain. Chem. Eng. 2017, 5, 5520–5528.

[38]

Liang, B.; Wang, H.; Shi, X. H.; Shen, B. Y.; He, X.; Ghazi, Z. A.; Khan, N. A.; Sin, H.; Khattak, A. M.; Li, L. S. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 2018, 10, 961–967.

[39]

Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017, 16, 1198–1202.

[40]

Jimenez-Solomon, M. F.; Song, Q. L.; Jelfs, K. E.; Munoz-Ibanez, M.; Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 2016, 15, 760–767.

[41]

Zhang, S. Y.; Shen, L.; Deng, H.; Liu, Q. Z.; You, X. D.; Yuan, J. Q.; Jiang, Z. Y.; Zhang, S. Ultrathin membranes for separations: A new era driven by advanced nanotechnology. Adv. Mater. 2022, 34, 2108457.

Nano Research
Pages 6638-6644
Cite this article:
Zhang K, Dai Y, Shi Y, et al. Cyclodextrin nanofilms with hydrophobic and hydrophilic channels for solvent permeation and molecular sieving. Nano Research, 2024, 17(7): 6638-6644. https://doi.org/10.1007/s12274-024-6560-1
Topics:

384

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 04 December 2023
Revised: 10 February 2024
Accepted: 12 February 2024
Published: 03 April 2024
© Tsinghua University Press 2024
Return