Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Seawater electrolysis, especially in coastlines, is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy; however, the practical viability is challenged severely by the limited anode durability resulting from side reactions of chlorine species. Herein, we report an effective Cl− blocking barrier of NiFe-layer double hydroxide (NiFe-LDH) to harmful chlorine chemistry during alkaline seawater oxidation (ASO), a pre-formed surface-derived NiFe-phosphate (Pi) outer-layer. Specifically, the PO43−-enriched outer-layer is capable of physically and electrostatically inhibiting Cl− adsorption, which protects active Ni3+ sites during ASO. The NiFe-LDH with the NiFe-Pi outer-layer (NiFe-LDH@NiFe-Pi) exhibits higher current densities (j) and lower overpotentials to afford 1 A·cm−2 (η1000 of 370 mV versus η1000 of 420 mV) than the NiFe-LDH in 1 M KOH + seawater. Notably, the NiFe-LDH@NiFe-Pi also demonstrates longer-term electrochemical durability than NiFe-LDH, attaining 100-h duration at the j of 1 A·cm−2. Additionally, the importance of surface-derived PO43−-enriched outer-layer in protecting the active centers, γ-NiOOH, is explained by ex situ characterizations and in situ electrochemical spectroscopic studies.
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.
Odenweller, A.; Ueckerdt, F.; Nemet, G. F.; Jensterle, M.; Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 2022, 7, 854–865.
Azadnia, A. H.; McDaid, C.; Andwari, A. M.; Hosseini, S. E. Green hydrogen supply chain risk analysis: A European hard-to-abate sectors perspective. Renew. Sustain. Energy Rev. 2023, 182, 113371.
Wang, M.; Zhang, L.; Pan, J. L.; Huang, M. R.; Zhu, H. W. A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Res. 2021, 14, 4740–4747.
Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.
Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-scale hydrogen production via water electrolysis: A techno-economic and environmental assessment. Energy Environ. Sci. 2022, 15, 3583–3602.
Becker, H.; Murawski, J.; Shinde, D. V.; Stephens, I. E. L.; Hinds, G.; Smith, G. Impact of impurities on water electrolysis: A review. Sustain. Energy Fuels 2023, 7, 1565–1603.
Postel, S. L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948.
Liang, J.; Li, Z. X.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Cai, Z. W. et al. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives. Mater. Today 2023, 69, 193–235.
Sheibani, R.; Shamsi, R.; Sheibani, M. Social consequences of Iran’s water crisis. Science 2023, 382, 164.
Goyenola, G. Uruguay’s water crisis: Prepare for future events. Nature 2023, 618, 675.
Hodges, K. Missing freshwater found off Hawai’i. Science 2020, 370, 1053–1055.
Darwish, M. A.; Al-Najem, N. The water problem in Kuwait. Desalination 2005, 177, 167–177.
Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.
Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.
Liu, J. Y.; Duan, S.; Shi, H.; Wang, T. Y.; Yang, X. X.; Huang, Y. H.; Wu, G.; Li, Q. Rationally designing efficient electrocatalysts for direct seawater splitting: Challenges, achievements, and promises. Angew. Chem., Int. Ed. 2022, 61, e202210753.
Liu, X. B.; Chi, J. Q.; Mao, H. M.; Wang, L. Principles of designing electrocatalyst to boost reactivity for seawater splitting. Adv. Energy Mater. 2023, 13, 2301438.
Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.
Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.
Tang, J.; Sun, S. J.; He, X.; Zhang, H.; Yang, C. X.; Zhang, M.; Yue, M.; Wang, H. F.; Sun, Y. T.; Luo. Y. L. et al. An amorphous FeMoO4 nanorod array enabled high-efficiency oxygen evolution electrocatalysis in alkaline seawater. Nano Res. 2024, 17, 2270–2275.
Wang, N.; Ou, P. F.; Hung, S. F.; Huang, J. E.; Ozden, A.; Abed, J.; Grigioni, I.; Chen, C.; Miao, R. K.; Yan, Y. et al. Strong-proton-adsorption Co-based electrocatalysts achieve active and stable neutral seawater splitting. Adv. Mater. 2023, 35, 2210057.
Zhao, Y. Q.; Jin, B.; Zheng, Y.; Jin, H. Y.; Jiao, Y.; Qiao, S. Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 2018, 8, 1801926.
Zhang, H.; He, X.; Dong, K.; Yao, Y. C.; Sun, S. J.; Zhang, M.; Yue, M.; Yang, C. X.; Zheng, D. D.; Liu, Q. et al. Selenate promoted stability improvement of nickel selenide nanosheet array with an amorphous NiOOH layer for seawater oxidation. Mater. Today Phys. 2023, 38, 101249.
Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.
Keane, T. P.; Veroneau, S. S.; Hartnett, A. C.; Nocera, D. G. Generation of pure oxygen from briny water by binary catalysis. J. Am. Chem. Soc. 2023, 145, 4989–4993.
Xin, Y.; Shen, K.; Guo, T. T.; Chen, L. Y.; Li, Y. W. Coupling hydrazine oxidation with seawater electrolysis for energy-saving hydrogen production over bifunctional CoNC nanoarray electrocatalysts. Small 2023, 19, 2300019.
Guo, P. F.; Liu, D.; Wu, R. B. Recent progress in design strategy of anode for seawater electrolysis. Small Struct. 2023, 4, 2300192.
Xin, Y.; Chen, L. Y.; Li, Y. W.; Shen, K. Highly selective electrosynthesis of 3,4-dihydroisoquinoline accompanied with hydrogen production over three-dimensional hollow CoNi-based microarray electrocatalysts. Nano Res. 2024, 17, 2509–2519.
Guo, T. T.; Chen, L. Y.; Li, Y. W.; Shen, K. Controllable synthesis of ultrathin defect-rich LDH nanoarrays coupled with MOF-derived Co-NC microarrays for efficient overall water splitting. Small 2022, 18, 2107739.
Gong, Z. C.; Liu, J. J.; Yan, M. M.; Gong, H. S.; Ye, G. L.; Fei, H. L. Highly durable and efficient seawater electrolysis enabled by defective graphene-confined nanoreactor. ACS Nano 2023, 17, 18372–18381.
Song, L. M.; Zhang, D.; Miao, H. F.; Shi, Y.; Wang, M. N.; Zhao, L.; Zhan, T. R.; Lai, J. P.; Wang, L. Interstitial atom-doped NiFe alloy as pre-catalysts boost direct seawater oxygen evolution. Appl. Catal. B: Environ. 2024, 342, 123376.
Liu, J. Y.; Liu, X.; Shi, H.; Luo, J. H.; Wang, L.; Liang, J. S.; Li, S. Z.; Yang, L. M.; Wang, T. Y.; Huang, Y. H. et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B: Environ. 2022, 302, 120862.
Chen, J.; Zhang, L. C.; Li, J.; He, X.; Zheng, Y. Y.; Sun, S. J.; Fang, X. D.; Zheng, D. D.; Luo, Y. S.; Wang, Y. et al. High-efficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122.
Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F,; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.
Zhang, L. C.; Li, L.; Liang, J.; Fan, X. Y.; He, X.; Chen, J.; Li, J.; Li, Z. X.; Cai, Z. W.; Sun, S. J. et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoS x microcolumn@NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775.
Enkhtuvshin, E.; Yeo, S.; Choi, H.; Kim, K. M.; An, B. S.; Biswas, S.; Lee, Y.; Nayak, A. K.; Jang, J. U.; Na, K. H. et al. Surface reconstruction of Ni-Fe layered double hydroxide inducing chloride ion blocking materials for outstanding overall seawater splitting. Adv. Funct. Mater. 2023, 33, 2214069.
Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.
You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.
Dong, G. F.; Xie, F. Y.; Kou, F. X.; Chen, T. T.; Wang, F. Y.; Zhou, Y. W.; Wu, K. C.; Du, S. W.; Fang, M.; Ho, J. C. NiFe-layered double hydroxide arrays for oxygen evolution reaction in fresh water and seawater. Mater. Today Energy 2021, 22, 100883.
Zhang, F. H.; Liu, Y. F.; Wu, L. B.; Ning, M. H.; Song, S. W.; Xiao, X.; Hadjiev, V. G.; Fan, D. E.; Wang, D. Z.; Yu, L. et al. Efficient alkaline seawater oxidation by a three-dimensional core–shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 2022, 27, 100841.
Zhang, X. F.; Li, Z. X.; Cai, Z. W.; Li, J.; Zhang, L. C.; Zheng, D. D.; Luo, Y. S.; Sun, S. J.; Liu, Q.; Tang, B. et al. Hierarchical CoS2@NiFe-LDH as an efficient electrocatalyst for alkaline seawater oxidation. Chem. Commun. 2023, 59, 11244–11247.
Tan, L.; Yu, J. T.; Wang, C.; Wang, H. F.; Liu, X. E.; Gao, H. T.; Xin, L. T.; Liu, D. Z.; Hou, W. G.; Zhan, T. R. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv. Funct. Mater. 2022, 32, 2200951.
Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.
Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.
Wang, M.; Wang, J. Q.; Xi, C.; Cheng, C. Q.; Kuai, C. G.; Zheng, X. L.; Zhang, R.; Xie, Y. M.; Dong, C. K.; Chen, Y. J. et al. Valence-state effect of iridium dopant in NiFe(OH)2 catalyst for hydrogen evolution reaction. Small 2021, 17, 2100203.
Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.
Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.
Tyndall, D.; Craig, M. J.; Gannon, L.; McGuinness, C.; McEvoy, N.; Roy, A.; García-Melchor, M.; Browne, M. P.; Nicolosi, V. Demonstrating the source of inherent instability in NiFe LDH-based OER electrocatalysts. J. Mater. Chem. A 2023, 11, 4067–4077.
Kuai, C. G.; Zhang, Y.; Wu, D. Y.; Sokaras, D.; Mu, L. Q.; Spence, S.; Nordlund, D.; Lin, F.; Du, X. W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019, 9, 6027–6032.
Frost, R. L.; Musumeci, A. W.; Kloprogge, J. T.; Adebajo, M. O.; Martens, W. N. Raman spectroscopy of hydrotalcites with phosphate in the interlayer: Implications for the removal of phosphate from water. J. Raman Spectrosc. 2006, 37, 733–741.
Li, Y. B.; Zhao, C. Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability. ACS Catal. 2017, 7, 2535–2541.
Ma, M.; Ge, R. X.; Ji, X. Q.; Ren, X.; Liu, Z. A.; Asiri, A. M.; Sun, X. P. Benzoate anions-intercalated layered nickel hydroxide nanobelts array: An earth-abundant electrocatalyst with greatly enhanced oxygen evolution activity. ACS Sustain. Chem. Eng. 2017, 5, 9625–9629.
Kaseem, M.; Ko, Y. G. Benzoate intercalated Mg-Al-layered double hydroxides (LDHs) as efficient chloride traps for plasma electrolysis coatings. J. Alloys Compd. 2019, 787, 772–778.
Ye, F.; Pang, R. L. J.; Lu, C. J.; Liu, Q.; Wu, Y. P.; Ma, R. Z.; Hu, L. F. Reversible ammonium ion intercalation/de-intercalation with crystal water promotion effect in layered VOPO4·2H2O. Angew. Chem., Int. Ed. 2023, 62, e202303480.
Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. Hierarchically coupled Ni:FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation. ACS Catal. 2019, 9, 5025–5034.
Xiao, M. J.; Wu, C.; Zhu, J. W.; Zhang, C. T.; Li, Y.; Lyu, J. H.; Zeng, W. H.; Li, H. W.; Chen, L.; Mu, S. C. In situ generated layered NiFe-LDH/MOF heterostructure nanosheet arrays with abundant defects for efficient alkaline and seawater oxidation. Nano Res. 2023, 16, 8945–8952
Dong, G. F.; Fang, M.; Zhang, J. S.; Wei, R. J.; Shu, L.; Liang, X. G.; Yip, S.; Wang, F. Y.; Guan, L. H.; Zheng, Z. J. et al. In situ Formation of highly active Ni-Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J. Mater. Chem. A 2017, 5, 11009–11015.
Li, G. Q.; Li, L.; Li, W. L.; Li, F. S.; Yuan, C. Z.; Zhang, N.; Zhang, H.; Weng, T. C. A hybrid nickel/iron-pyromellitic acid electrocatalyst for oxygen evolution reaction. Nano Res. 2024, 17, 2481–2491.
Sultan, S.; Ha, M. R.; Kim, D. Y.; Tiwari, J. N.; Myung, C. W.; Meena, A.; Shin, T. J.; Chae, K. H.; Kim, K. S. Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nat. Commun. 2019, 10, 5195.
Liu, P. F.; Li, X.; Yang, S.; Zu, M. Y.; Liu, P. R.; Zhang, B.; Zheng, L. R.; Zhao, H. J.; Yang, H. G. Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis. ACS Energy Lett. 2017, 2, 2257–2263.
Shao, Y.; Xiao, X.; Zhu, Y. P.; Ma, T. Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem., Int. Ed. 2019, 58, 14599–14604.
Kanan, M. W.; Nocera, D. G. In situ Formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075
Li, T. S.; Zhao, X. P.; Sendeku, G. M.; Zhang, X. H.; Xu, L.; Wang, Z. L.; Wang, S. Y.; Duan, X. X.; Liu, H.; Liu, W. et al. Phosphate-decorated Ni3Fe-LDHs@CoP x nanoarray for near-neutral seawater splitting. Chem. Eng. J. 2023, 460, 141413.
Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.
Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.
He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W. J.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.
Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 2021, 143, 1493–1502.
Dai, L. M.; Fang, C. C.; Yao, F. L.; Zhang, X. Y.; Xu, X. F.; Han, S. L.; Deng, J. Y.; Zhu, J. W.; Sun, J. W. Thickness-dependent β/γ-NiOOH transformation of Ni-MOFs in oxygen evolution reaction. Appl. Surf. Sci. 2023, 623, 156991.
Wu, Y. Z.; Zhao, Y. Y.; Zhai, P. L.; Wang, C.; Gao, J. F.; Sun, L. C.; Hou, J. G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation. Adv. Mater. 2022, 34, 2202523.