AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Surface-derived phosphate layer on NiFe-layered double hydroxide realizes stable seawater oxidation at the current density of 1 A·cm−2

Chaoxin Yang1Zhengwei Cai1Jie Liang2Kai Dong1Zixiao Li1,2Hang Sun3Shengjun Sun1Dongdong Zheng1Hui Zhang1Yongsong Luo1Yongchao Yao2Yan Wang2Yuchun Ren2Qian Liu4Luming Li4Wei Chu4Xuping Sun1,2( )Bo Tang1,5( )
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Department of Science and Environmental Studies, Faculty of Liberal Arts and Social Science, the Education University of Hong Kong, Hong Kong 999077, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Laoshan Laboratory, Qingdao 266237, China
Show Author Information

Graphical Abstract

Corrosive Cl-based side reactions lead to fast activity decay of alkaline seawater oxidationanode, especially under strongly polarized conditions. This work provides a facile way ofconstructing robust phosphate structures on NiFe-layered double hydroxide toward keepingCl away effectively, and thus steadily driving electrolysis at an appreciable geometric currentdensity of 1 A·cm−2.

Abstract

Seawater electrolysis, especially in coastlines, is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy; however, the practical viability is challenged severely by the limited anode durability resulting from side reactions of chlorine species. Herein, we report an effective Cl blocking barrier of NiFe-layer double hydroxide (NiFe-LDH) to harmful chlorine chemistry during alkaline seawater oxidation (ASO), a pre-formed surface-derived NiFe-phosphate (Pi) outer-layer. Specifically, the PO43−-enriched outer-layer is capable of physically and electrostatically inhibiting Cl adsorption, which protects active Ni3+ sites during ASO. The NiFe-LDH with the NiFe-Pi outer-layer (NiFe-LDH@NiFe-Pi) exhibits higher current densities (j) and lower overpotentials to afford 1 A·cm−2 (η1000 of 370 mV versus η1000 of 420 mV) than the NiFe-LDH in 1 M KOH + seawater. Notably, the NiFe-LDH@NiFe-Pi also demonstrates longer-term electrochemical durability than NiFe-LDH, attaining 100-h duration at the j of 1 A·cm−2. Additionally, the importance of surface-derived PO43−-enriched outer-layer in protecting the active centers, γ-NiOOH, is explained by ex situ characterizations and in situ electrochemical spectroscopic studies.

Electronic Supplementary Material

Download File(s)
6562_ESM.pdf (900.3 KB)

References

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Odenweller, A.; Ueckerdt, F.; Nemet, G. F.; Jensterle, M.; Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 2022, 7, 854–865.

[3]

Azadnia, A. H.; McDaid, C.; Andwari, A. M.; Hosseini, S. E. Green hydrogen supply chain risk analysis: A European hard-to-abate sectors perspective. Renew. Sustain. Energy Rev. 2023, 182, 113371.

[4]

Wang, M.; Zhang, L.; Pan, J. L.; Huang, M. R.; Zhu, H. W. A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Res. 2021, 14, 4740–4747.

[5]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[6]

Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-scale hydrogen production via water electrolysis: A techno-economic and environmental assessment. Energy Environ. Sci. 2022, 15, 3583–3602.

[7]

Becker, H.; Murawski, J.; Shinde, D. V.; Stephens, I. E. L.; Hinds, G.; Smith, G. Impact of impurities on water electrolysis: A review. Sustain. Energy Fuels 2023, 7, 1565–1603.

[8]

Postel, S. L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948.

[9]

Liang, J.; Li, Z. X.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Cai, Z. W. et al. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives. Mater. Today 2023, 69, 193–235.

[10]

Sheibani, R.; Shamsi, R.; Sheibani, M. Social consequences of Iran’s water crisis. Science 2023, 382, 164.

[11]

Goyenola, G. Uruguay’s water crisis: Prepare for future events. Nature 2023, 618, 675.

[12]

Hodges, K. Missing freshwater found off Hawai’i. Science 2020, 370, 1053–1055.

[13]

Darwish, M. A.; Al-Najem, N. The water problem in Kuwait. Desalination 2005, 177, 167–177.

[14]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[15]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[16]

Liu, J. Y.; Duan, S.; Shi, H.; Wang, T. Y.; Yang, X. X.; Huang, Y. H.; Wu, G.; Li, Q. Rationally designing efficient electrocatalysts for direct seawater splitting: Challenges, achievements, and promises. Angew. Chem., Int. Ed. 2022, 61, e202210753.

[17]

Liu, X. B.; Chi, J. Q.; Mao, H. M.; Wang, L. Principles of designing electrocatalyst to boost reactivity for seawater splitting. Adv. Energy Mater. 2023, 13, 2301438.

[18]

Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.

[19]

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

[20]

Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.

[21]

Tang, J.; Sun, S. J.; He, X.; Zhang, H.; Yang, C. X.; Zhang, M.; Yue, M.; Wang, H. F.; Sun, Y. T.; Luo. Y. L. et al. An amorphous FeMoO4 nanorod array enabled high-efficiency oxygen evolution electrocatalysis in alkaline seawater. Nano Res. 2024, 17, 2270–2275.

[22]

Wang, N.; Ou, P. F.; Hung, S. F.; Huang, J. E.; Ozden, A.; Abed, J.; Grigioni, I.; Chen, C.; Miao, R. K.; Yan, Y. et al. Strong-proton-adsorption Co-based electrocatalysts achieve active and stable neutral seawater splitting. Adv. Mater. 2023, 35, 2210057.

[23]

Zhao, Y. Q.; Jin, B.; Zheng, Y.; Jin, H. Y.; Jiao, Y.; Qiao, S. Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 2018, 8, 1801926.

[24]

Zhang, H.; He, X.; Dong, K.; Yao, Y. C.; Sun, S. J.; Zhang, M.; Yue, M.; Yang, C. X.; Zheng, D. D.; Liu, Q. et al. Selenate promoted stability improvement of nickel selenide nanosheet array with an amorphous NiOOH layer for seawater oxidation. Mater. Today Phys. 2023, 38, 101249.

[25]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[26]

Keane, T. P.; Veroneau, S. S.; Hartnett, A. C.; Nocera, D. G. Generation of pure oxygen from briny water by binary catalysis. J. Am. Chem. Soc. 2023, 145, 4989–4993.

[27]

Xin, Y.; Shen, K.; Guo, T. T.; Chen, L. Y.; Li, Y. W. Coupling hydrazine oxidation with seawater electrolysis for energy-saving hydrogen production over bifunctional CoNC nanoarray electrocatalysts. Small 2023, 19, 2300019.

[28]

Guo, P. F.; Liu, D.; Wu, R. B. Recent progress in design strategy of anode for seawater electrolysis. Small Struct. 2023, 4, 2300192.

[29]

Xin, Y.; Chen, L. Y.; Li, Y. W.; Shen, K. Highly selective electrosynthesis of 3,4-dihydroisoquinoline accompanied with hydrogen production over three-dimensional hollow CoNi-based microarray electrocatalysts. Nano Res. 2024, 17, 2509–2519.

[30]

Guo, T. T.; Chen, L. Y.; Li, Y. W.; Shen, K. Controllable synthesis of ultrathin defect-rich LDH nanoarrays coupled with MOF-derived Co-NC microarrays for efficient overall water splitting. Small 2022, 18, 2107739.

[31]

Gong, Z. C.; Liu, J. J.; Yan, M. M.; Gong, H. S.; Ye, G. L.; Fei, H. L. Highly durable and efficient seawater electrolysis enabled by defective graphene-confined nanoreactor. ACS Nano 2023, 17, 18372–18381.

[32]

Song, L. M.; Zhang, D.; Miao, H. F.; Shi, Y.; Wang, M. N.; Zhao, L.; Zhan, T. R.; Lai, J. P.; Wang, L. Interstitial atom-doped NiFe alloy as pre-catalysts boost direct seawater oxygen evolution. Appl. Catal. B: Environ. 2024, 342, 123376.

[33]

Liu, J. Y.; Liu, X.; Shi, H.; Luo, J. H.; Wang, L.; Liang, J. S.; Li, S. Z.; Yang, L. M.; Wang, T. Y.; Huang, Y. H. et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B: Environ. 2022, 302, 120862.

[34]

Chen, J.; Zhang, L. C.; Li, J.; He, X.; Zheng, Y. Y.; Sun, S. J.; Fang, X. D.; Zheng, D. D.; Luo, Y. S.; Wang, Y. et al. High-efficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122.

[35]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F,; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[36]

Zhang, L. C.; Li, L.; Liang, J.; Fan, X. Y.; He, X.; Chen, J.; Li, J.; Li, Z. X.; Cai, Z. W.; Sun, S. J. et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoS x microcolumn@NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775.

[37]

Enkhtuvshin, E.; Yeo, S.; Choi, H.; Kim, K. M.; An, B. S.; Biswas, S.; Lee, Y.; Nayak, A. K.; Jang, J. U.; Na, K. H. et al. Surface reconstruction of Ni-Fe layered double hydroxide inducing chloride ion blocking materials for outstanding overall seawater splitting. Adv. Funct. Mater. 2023, 33, 2214069.

[38]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[39]

You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.

[40]

Dong, G. F.; Xie, F. Y.; Kou, F. X.; Chen, T. T.; Wang, F. Y.; Zhou, Y. W.; Wu, K. C.; Du, S. W.; Fang, M.; Ho, J. C. NiFe-layered double hydroxide arrays for oxygen evolution reaction in fresh water and seawater. Mater. Today Energy 2021, 22, 100883.

[41]

Zhang, F. H.; Liu, Y. F.; Wu, L. B.; Ning, M. H.; Song, S. W.; Xiao, X.; Hadjiev, V. G.; Fan, D. E.; Wang, D. Z.; Yu, L. et al. Efficient alkaline seawater oxidation by a three-dimensional core–shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 2022, 27, 100841.

[42]
Gao, G. H.; Zhao, R. Z.; Wang, Y. J.; Ma, X.; Li, Y.; Zhang, J.; Li, J. S. Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2023.109181.
[43]

Zhang, X. F.; Li, Z. X.; Cai, Z. W.; Li, J.; Zhang, L. C.; Zheng, D. D.; Luo, Y. S.; Sun, S. J.; Liu, Q.; Tang, B. et al. Hierarchical CoS2@NiFe-LDH as an efficient electrocatalyst for alkaline seawater oxidation. Chem. Commun. 2023, 59, 11244–11247.

[44]

Tan, L.; Yu, J. T.; Wang, C.; Wang, H. F.; Liu, X. E.; Gao, H. T.; Xin, L. T.; Liu, D. Z.; Hou, W. G.; Zhan, T. R. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv. Funct. Mater. 2022, 32, 2200951.

[45]

Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

[46]

Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.

[47]

Wang, M.; Wang, J. Q.; Xi, C.; Cheng, C. Q.; Kuai, C. G.; Zheng, X. L.; Zhang, R.; Xie, Y. M.; Dong, C. K.; Chen, Y. J. et al. Valence-state effect of iridium dopant in NiFe(OH)2 catalyst for hydrogen evolution reaction. Small 2021, 17, 2100203.

[48]

Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.

[49]

Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.

[50]

Tyndall, D.; Craig, M. J.; Gannon, L.; McGuinness, C.; McEvoy, N.; Roy, A.; García-Melchor, M.; Browne, M. P.; Nicolosi, V. Demonstrating the source of inherent instability in NiFe LDH-based OER electrocatalysts. J. Mater. Chem. A 2023, 11, 4067–4077.

[51]

Kuai, C. G.; Zhang, Y.; Wu, D. Y.; Sokaras, D.; Mu, L. Q.; Spence, S.; Nordlund, D.; Lin, F.; Du, X. W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019, 9, 6027–6032.

[52]

Frost, R. L.; Musumeci, A. W.; Kloprogge, J. T.; Adebajo, M. O.; Martens, W. N. Raman spectroscopy of hydrotalcites with phosphate in the interlayer: Implications for the removal of phosphate from water. J. Raman Spectrosc. 2006, 37, 733–741.

[53]

Li, Y. B.; Zhao, C. Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability. ACS Catal. 2017, 7, 2535–2541.

[54]

Ma, M.; Ge, R. X.; Ji, X. Q.; Ren, X.; Liu, Z. A.; Asiri, A. M.; Sun, X. P. Benzoate anions-intercalated layered nickel hydroxide nanobelts array: An earth-abundant electrocatalyst with greatly enhanced oxygen evolution activity. ACS Sustain. Chem. Eng. 2017, 5, 9625–9629.

[55]

Kaseem, M.; Ko, Y. G. Benzoate intercalated Mg-Al-layered double hydroxides (LDHs) as efficient chloride traps for plasma electrolysis coatings. J. Alloys Compd. 2019, 787, 772–778.

[56]

Ye, F.; Pang, R. L. J.; Lu, C. J.; Liu, Q.; Wu, Y. P.; Ma, R. Z.; Hu, L. F. Reversible ammonium ion intercalation/de-intercalation with crystal water promotion effect in layered VOPO4·2H2O. Angew. Chem., Int. Ed. 2023, 62, e202303480.

[57]

Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. Hierarchically coupled Ni:FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation. ACS Catal. 2019, 9, 5025–5034.

[58]

Xiao, M. J.; Wu, C.; Zhu, J. W.; Zhang, C. T.; Li, Y.; Lyu, J. H.; Zeng, W. H.; Li, H. W.; Chen, L.; Mu, S. C. In situ generated layered NiFe-LDH/MOF heterostructure nanosheet arrays with abundant defects for efficient alkaline and seawater oxidation. Nano Res. 2023, 16, 8945–8952

[59]

Dong, G. F.; Fang, M.; Zhang, J. S.; Wei, R. J.; Shu, L.; Liang, X. G.; Yip, S.; Wang, F. Y.; Guan, L. H.; Zheng, Z. J. et al. In situ Formation of highly active Ni-Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J. Mater. Chem. A 2017, 5, 11009–11015.

[60]

Li, G. Q.; Li, L.; Li, W. L.; Li, F. S.; Yuan, C. Z.; Zhang, N.; Zhang, H.; Weng, T. C. A hybrid nickel/iron-pyromellitic acid electrocatalyst for oxygen evolution reaction. Nano Res. 2024, 17, 2481–2491.

[61]

Sultan, S.; Ha, M. R.; Kim, D. Y.; Tiwari, J. N.; Myung, C. W.; Meena, A.; Shin, T. J.; Chae, K. H.; Kim, K. S. Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nat. Commun. 2019, 10, 5195.

[62]

Liu, P. F.; Li, X.; Yang, S.; Zu, M. Y.; Liu, P. R.; Zhang, B.; Zheng, L. R.; Zhao, H. J.; Yang, H. G. Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis. ACS Energy Lett. 2017, 2, 2257–2263.

[63]

Shao, Y.; Xiao, X.; Zhu, Y. P.; Ma, T. Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem., Int. Ed. 2019, 58, 14599–14604.

[64]

Kanan, M. W.; Nocera, D. G. In situ Formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075

[65]

Li, T. S.; Zhao, X. P.; Sendeku, G. M.; Zhang, X. H.; Xu, L.; Wang, Z. L.; Wang, S. Y.; Duan, X. X.; Liu, H.; Liu, W. et al. Phosphate-decorated Ni3Fe-LDHs@CoP x nanoarray for near-neutral seawater splitting. Chem. Eng. J. 2023, 460, 141413.

[66]

Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.

[67]

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

[68]

He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W. J.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.

[69]

Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 2021, 143, 1493–1502.

[70]

Dai, L. M.; Fang, C. C.; Yao, F. L.; Zhang, X. Y.; Xu, X. F.; Han, S. L.; Deng, J. Y.; Zhu, J. W.; Sun, J. W. Thickness-dependent β/γ-NiOOH transformation of Ni-MOFs in oxygen evolution reaction. Appl. Surf. Sci. 2023, 623, 156991.

[71]

Wu, Y. Z.; Zhao, Y. Y.; Zhai, P. L.; Wang, C.; Gao, J. F.; Sun, L. C.; Hou, J. G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation. Adv. Mater. 2022, 34, 2202523.

Nano Research
Pages 5786-5794
Cite this article:
Yang C, Cai Z, Liang J, et al. Surface-derived phosphate layer on NiFe-layered double hydroxide realizes stable seawater oxidation at the current density of 1 A·cm−2. Nano Research, 2024, 17(7): 5786-5794. https://doi.org/10.1007/s12274-024-6562-z
Topics:

891

Views

7

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 09 December 2023
Revised: 29 January 2024
Accepted: 14 February 2024
Published: 15 March 2024
© Tsinghua University Press 2024
Return