AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

On-chip integrated GeSe2/Si vdW heterojunction for ultraviolet-enhanced broadband photodetection, imaging, and secure optical communication

Zhiman Zhou1Kunxuan Liu2Di Wu1( )Yunrui Jiang2Ranran Zhuo1Pei Lin1Zhifeng Shi1Yongtao Tian1Wei Han3( )Longhui Zeng1Xinjian Li1
School of Physics and Microelectronics, Key Laboratory of Material Physics Ministry of Education, Zhengzhou University, Zhengzhou 450052, China
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
Institute of Microelectronics and Integrated Circuits, School of Microelectronics, Hubei University, Wuhan 430062, China
Show Author Information

Graphical Abstract

High-quality GeSe2/Si van der Waals (vdW) heterojunction photodetector and an integrated device array are in-situ fabricated, which show ultraviolet (UV)-enhanced broadband self-driven photodetection and imaging performances.

Abstract

Broadband photodetection, spanning from ultraviolet (UV) to infrared (IR), is pivotal in diverse technological domains including astronomy, remote sensing, environmental monitoring, and medical diagnostics. However, current commercially available broadband photodetectors, predominately based on conventional narrow-bandgap semiconductors, exhibit limited sensitivity in the UV region. This limitation, stemming from the significant energy disparity between the semiconductor bandgap and UV photon, narrows their application scope. Herein, we report an innovative approach involving the in-situ van der Waals (vdW) integration of two-dimensional (2D) GeSe2 layers onto a Si substrate. This process yields a high-quality GeSe2/Si vdW heterojunction device, which features a broad response range covering from UV to near-IR (NIR) with a greatly-enhanced sensitivity in the UV region. The device possesses high responsivities of 325 and 533.4 mA/W, large detectivities of 1.24 × 1013 and 2.57 × 1013 Jones, and fast response speeds of 20.6/82.1 and 17.7/81.0 μs under 360 and 980 nm, respectively. Notably, the broadband image sensing and secure invisible optical communication capabilities of the GeSe2/Si heterojunction device are demonstrated. Our work provides a viable approach for UV-enhanced broadband photodetection technology, opening up new possibilities and applications across various scientific and technological domains.

Electronic Supplementary Material

Download File(s)
6564_ESM.pdf (1.4 MB)

References

[1]

Chen, J. X.; Ouyang, W. X.; Yang, W.; He, J. H.; Fang, X. S. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909.

[2]

Zhang, Q.; Li, X.; He, Z. W.; Xu, M. X.; Jin, C. C.; Zhou, X. 2D semiconductors towards high-performance ultraviolet photodetection. J. Phys. D. Appl. Phys. 2019, 52, 303002

[3]

Jiang, K.; Sun, X. J.; Zhang, Z. H.; Ben, J. W.; Che, J. M.; Shi, Z. M.; Jia, Y. P.; Chen, Y.; Zhang, S. L.; Lv, W. et al. Polarization-enhanced AlGaN solar-blind ultraviolet detectors. Photonics Res. 2020, 8, 1243–1252.

[4]

Chen, H. Y.; Yu, P. P.; Zhang, Z. Z.; Teng, F.; Zheng, L. X.; Hu, K.; Fang, X. S. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 2016, 12, 5809–5816.

[5]

Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

[6]

Lin, C. N.; Lu, Y. J.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Sun, J. L.; Dong, L.; Zhong, F.; Hu, W. D.; Shan, C. X. Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018, 6, 1800068.

[7]

Wang, Y. M.; Ding, K.; Sun, B. Q.; Lee, S. T.; Jie, J. S. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016, 9, 72–93.

[8]

Zhu, H.; Chen, Y.; Zhao, Y.; Li, X.; Teng, Y.; Hao, X. J.; Liu, J. F.; Zhu, H.; Wu, Q. H.; Huang, Y. Growth and characterization of InGaAs/InAsSb superlattices by metal-organic chemical vapor deposition for mid-wavelength infrared photodetectors. Superlattices Microstruct. 2020, 146, 106655.

[9]

Jiao, H. X.; Wang, X. D.; Chen, Y.; Guo, S. F.; Wu, S. Q.; Song, C. Y.; Huang, S. Y.; Huang, X. N.; Tai, X. C.; Lin, T. et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 2022, 8, eabn1811.

[10]

Shi, L.; Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 2012, 12, 2453–2459.

[11]

Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L. L.; Li, T. X.; Martyniuk, P.; Rogalski, A.; Hu, W. D. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396.

[12]

Wu, Y. P.; Wu, S. E.; Hei, J. J.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Chen, Q. M.; Li, X. J.; Yu, X. C.; Wu, D. van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging. Nano Res. 2023, 16, 11422–11429

[13]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[14]

Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; Jena, D.; Johnson, N. M.; Jones, K. A.; Kaplar, R. J.; Rajan, S.; Van de Walle, C. G.; Bellotti, E. et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. 2018, 4, 1600501.

[15]

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

[16]

Wang, J.; Han, J. Y.; Chen, X. Q.; Wang, X. R. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

[17]

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412

[18]

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

[19]

Pan, S. Q.; Wu, S. E.; Hei, J.; Zhou, Z. W.; Zeng, L. H.; Xing, Y. K.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J. et al. Light trapping enhanced broadband photodetection and imaging based on MoSe2/pyramid Si vdW heterojunction. Nano Res. 2023, 16, 10552–10558.

[20]

Yan, Y.; Xiong, W. Q.; Li, S. S.; Zhao, K.; Wang, X. T.; Su, J.; Song, X. H.; Li, X. P.; Zhang, S.; Yang, H. et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection. Adv. Opt. Mater. 2019, 7, 1900622.

[21]

Popović, Z. V.; Breitschwerdt, A. Optical absorption band edge of single crystal β-GeSe2. Phys. Lett. A 1985, 110, 426–428.

[22]

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

[23]

Liu, W. J.; Yu, Y. Y.; Peng, M.; Zheng, Z. H.; Jian, P. C.; Wang, Y.; Zou, Y. C.; Zhao, Y. M.; Wang, F.; Wu, F. et al. Integrating 2D layered materials with 3D bulk materials as van der Waals heterostructures for photodetections: Current status and perspectives. InfoMat 2023, 5, e12470.

[24]

Zeng, L. H.; Han, W.; Ren, X. Y.; Li, X.; Wu, D.; Liu, S. J.; Wang, H.; Lau, S. P.; Tsang, Y. H.; Shan, C. X. et al. Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 dirac semimetal. Nano Lett. 2023, 23, 8241–8248.

[25]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light: Sci. Appl. 2021, 10, 123.

[26]

Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555

[27]

Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022, 104, 107972.

[28]

Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189

[29]

Zhuo, R. R.; Wu, D.; Wang, Y. G.; Wu, E. P.; Jia, C.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J. Mater. Chem. C 2018, 6, 10982–10986.

[30]

Xiang, D.; Han, C.; Hu, Z. H.; Lei, B.; Liu, Y. Y.; Wang, L.; Hu, W. P.; Chen, W. Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small 2015, 11, 4829–4836.

[31]

Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

[32]

Jia, C.; Wu, D.; Wu, E. P.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Xu, T. T.; Huang, X. W.; Tian, Y. T.; Li, X. J. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C 2019, 7, 3817–3821.

[33]

Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

[34]

Zhao, B.; Wang, F.; Chen, H. Y.; Zheng, L. X.; Su, L. X.; Zhao, D. X.; Fang, X. S. An ultrahigh responsivity (9.7 mA·W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264.

[35]

Henck, H.; Pierucci, D.; Chaste, J.; Naylor, C. H.; Avila, J.; Balan, A.; Silly, M. G.; Asensio, M. C.; Sirotti, F.; Johnson, A. T. C. et al. Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse. Appl. Phys. Lett. 2016, 109, 113103.

[36]

Deka Boruah, B.; Misra, A. Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector. ACS Appl. Mater. Interfaces 2016, 8, 18182–18188.

[37]

Kim, D.; Park, K.; Lee, J. H.; Kwon, I. S.; Kwak, I. H.; Park, J. Anisotropic 2D SiAs for high-performance UV–visible photodetectors. Small 2021, 17, 2006310.

[38]

Ning, J.; Zhou, Y.; Zhang, J. C.; Lu, W.; Dong, J. G.; Yan, C. C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H. et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104.

[39]

Flemban, T. H.; Haque, M. A.; Ajia, I.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I. S. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity. ACS Appl. Mater. Interfaces 2017, 9, 37120–37127.

[40]

Yin, S. Q.; Zhao, B. T.; Wan, J. J.; Wang, S. L.; Yang, J. Y.; Wang, X.; Zeng, L. H.; Han, W.; Chen, L. J.; Chen, J. W. et al. MXene-contact enhanced broadband photodetection in centimeter level GeS films. J. Phys. D: Appl. Phys. 2022, 55, 265105.

[41]

Sun, M. X.; Xie, D.; Sun, Y. L.; Li, W. W.; Ren, T. L. Locally hydrazine doped WSe2 p-n junction toward high-performance photodetectors. Nanotechnology 2018, 29, 015203.

[42]

Luo, L. B.; Hu, H.; Wang, X. H.; Lu, R.; Zou, Y. F.; Yu, Y. Q.; Liang, F. X. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 2015, 3, 4723–4728.

[43]

Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572

[44]

Lu, Y.; Krishna, S.; Liao, C. H.; Yang, Z. Q.; Kumar, M.; Liu, Z. Y.; Tang, X.; Xiao, N.; Hassine, M. B.; Thoroddsen, S. T. et al. Transferable Ga2O3 membrane for vertical and flexible electronics via one-step exfoliation. ACS Appl. Mater. Interfaces 2022, 14, 47922–47930.

[45]

Jia, C.; Huang, X. W.; Wu, D.; Tian, Y. Z.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Tian, Y. T.; Jie, J. S.; Li, X. J. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale 2020, 12, 4435–4444.

[46]

Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

[47]

Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light: Sci. Appl. 2023, 12, 5.

Nano Research
Pages 6544-6549
Cite this article:
Zhou Z, Liu K, Wu D, et al. On-chip integrated GeSe2/Si vdW heterojunction for ultraviolet-enhanced broadband photodetection, imaging, and secure optical communication. Nano Research, 2024, 17(7): 6544-6549. https://doi.org/10.1007/s12274-024-6564-x
Topics:

1687

Views

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 16 December 2023
Revised: 01 February 2024
Accepted: 14 February 2024
Published: 22 April 2024
© Tsinghua University Press 2024
Return