AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor

Pengcheng Zhu1,§Shuairong Mu1,§Wenhao Huang1Zeye Sun2Yuyang Lin1Ke Chen1Zhifeng Pan1Mohsen Golbon Haghighi3Roya Sedghi3Junlei Wang2( )Yanchao Mao1( )
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Department of Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran

§ Pengcheng Zhu and Shuairong Mu contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

A soft multifunctional neurological electronic skin (E-skin) (SMNE) comprised of a polymer semiconductor-based stretchable synaptic transistor and multiple soft artificial sensory receptors was demonstrated. The SMNE can effectively perceive force, thermal, and light stimuli that mimic the human neural system, enabling the robot to make precise actions in response to various external stimuli. This SMNE could offer a novel strategy for the development of E-skins for intelligent robot applications.

Abstract

Neurological electronic skin (E-skin) can process and transmit information in a distributed manner that achieves effective stimuli perception, holding great promise in neuroprosthetics and soft robotics. Neurological E-skin with multifunctional perception abilities can enable robots to precisely interact with the complex surrounding environment. However, current neurological E-skins that possess tactile, thermal, and visual perception abilities are usually prepared with rigid materials, bringing difficulties in realizing biologically synapse-like softness. Here, we report a soft multifunctional neurological E-skin (SMNE) comprised of a poly(3-hexylthiophene) (P3HT) nanofiber polymer semiconductor-based stretchable synaptic transistor and multiple soft artificial sensory receptors, which is capable of effectively perceiving force, thermal, and light stimuli. The stretchable synaptic transistor can convert electrical signals into transient channel currents analogous to the biological excitatory postsynaptic currents. And it also possesses both short-term and long-term synaptic plasticity that mimics the human memory system. By integrating a stretchable triboelectric nanogenerator, a soft thermoelectric device, and an elastic photodetector as artificial receptors, we further developed an SMNE that enables the robot to make precise actions in response to various surrounding stimuli. Compared with traditional neurological E-skin, our SMNE can maintain the softness and adaptability of biological synapses while perceiving multiple stimuli including force, temperature, and light. This SMNE could promote the advancement of E-skins for intelligent robot applications.

Electronic Supplementary Material

Video
6566_ESM2.mp4
6566_ESM3.mp4
6566_ESM4.mp4
Download File(s)
6566_ESM1.pdf (1.5 MB)

References

[1]

Yang, M.; Cheng, Y. F.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W. J.; Wang, Z. Y.; Guo, H. Z. et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 2022, 9, 2200507

[2]

Feng, T. X.; Ling, D.; Li, C. Y.; Zheng, W. T.; Zhang, S. C.; Li, C.; Emel’yanov, A.; Pozdnyakov, A. S.; Lu, L. J.; Mao, Y. C. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 2024, 17, 4462–4470

[3]

Qu, X. Y.; Liu, J. Y.; Wang, S. Y.; Shao, J. J.; Wang, Q.; Wang, W. J.; Gan, L.; Zhong, L. P.; Dong, X. C.; Zhao, Y. X. Photothermal regulated multi-perceptive poly(ionic liquids) hydrogel sensor for bioelectronics. Chem. Eng. J. 2023, 453, 139785.

[4]

Liu, D. J.; Zhu, P. C.; Zhang, F. K.; Li, P. S.; Huang, W. H.; Li, C.; Han, N. N.; Mu, S. R.; Zhou, H.; Mao, Y. C. Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light. Nano Res. 2023, 16, 1196–1204.

[5]

Tang, W.; Sun, Q. J.; Wang, Z. L. Self-powered sensing in wearable electronics-a paradigm shift technology. Chem. Rev. 2023, 123, 12105–12134.

[6]

Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Huang, H.; Wang, Q.; Shao, J. J.; Wang, W. J.; Dong, X. C. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 2021, 425, 131523.

[7]

Zhao, W.; Qu, X. Y.; Xu, Q.; Lu, Y.; Yuan, W.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels. Adv. Electron. Mater. 2020, 6, 2000267.

[8]

Liu, F. Y.; Deswal, S.; Christou, A.; Sandamirskaya, Y.; Kaboli, M.; Dahiya, R. Neuro-inspired electronic skin for robots. Sci. Robot. 2022, 7, eabl7344.

[9]

Wang, W. C.; Jiang, Y. W.; Zhong, D. L.; Zhang, Z. T.; Choudhury, S.; Lai, J. C.; Gong, H. X.; Niu, S. M.; Yan, X. Z.; Zheng, Y. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735–742.

[10]

Shim, H.; Jang, S.; Thukral, A.; Jeong, S.; Jo, H.; Kan, B.; Patel, S.; Wei, G. D.; Lan, W.; Kim, H. J. et al. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proc. Natl. Acad. Sci. USA 2022, 119, e2204852119.

[11]

Chen, F. D.; Zhang, S.; Hu, L.; Fan, J. J.; Lin, C. H.; Guan, P. Y.; Zhou, Y. Z.; Wan, T.; Peng, S. H.; Wang, C. H. et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv. Funct. Mater. 2023, 33, 2300266.

[12]

Wang, X.; Yang, S. T.; Qin, Z. Z.; Hu, B.; Bu, L. J.; Lu, G. H. Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 2023, 35, 2303699.

[13]

Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.

[14]

Duan, Q. X.; Zhang, T.; Liu, C.; Yuan, R.; Li, G.; Jun Tiw, P.; Yang, K.; Ge, C.; Yang, Y. C.; Huang, R. Artificial multisensory neurons with fused haptic and temperature perception for multimodal in-sensor computing. Adv. Intell. Syst. 2022, 4, 2200039.

[15]

Yu, J. R.; Wang, Y. F.; Qin, S. S.; Gao, G. Y.; Xu, C.; Wang, Z. L.; Sun, Q. J. Bioinspired interactive neuromorphic devices. Mater. Today 2022, 60, 158–182.

[16]

Shan, L. T.; Chen, Q. Z.; Yu, R. J.; Gao, C. S.; Liu, L. J.; Guo, T. L.; Chen, H. P. A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition. Nat. Commun. 2023, 14, 2648.

[17]

Wan, H. C.; Zhao, J. Y.; Lo, L. W.; Cao, Y. Q.; Sepúlveda, N.; Wang, C. Multimodal artificial neurological sensory-memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 2021, 15, 14587–14597.

[18]

Han, J. K.; Yun, S. Y.; Yu, J. M.; Jeon, S. B.; Choi, Y. K. Artificial multisensory neuron with a single transistor for multimodal perception through hybrid visual and thermal sensing. ACS Appl. Mater. Interfaces 2023, 15, 5449–5455.

[19]

Subramanian Periyal, S.; Jagadeeswararao, M.; Ng, S. E.; John, R. A.; Mathews, N. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 2020, 5, 2000514.

[20]

Yu, J. R.; Yang, X. X.; Gao, G. Y.; Xiong, Y.; Wang, Y. F.; Han, J.; Chen, Y. H.; Zhang, H.; Sun, Q. J.; Wang, Z. L. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 2021, 7, eabd9117.

[21]

Wang, X.; Ran, Y. X.; Li, X. Q.; Qin, X. S.; Lu, W. L.; Zhu, Y. W.; Lu, G. H. Bio-inspired artificial synaptic transistors: Evolution from innovative basic units to system integration. Mater. Horiz. 2023, 10, 3269–3292.

[22]

Shim, H.; Jang, S.; Jang, J. G.; Rao, Z. L.; Hong, J. I.; Sim, K.; Yu, C. J. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 2022, 15, 758–764.

[23]

Peng, Y. J.; Gao, L.; Liu, C. J.; Deng, J. Y.; Xie, M.; Bai, L. B.; Wang, G.; Cheng, Y. H.; Huang, W.; Yu, J. S. Stretchable organic electrochemical transistors via three-dimensional porous elastic semiconducting films for artificial synaptic applications. Nano Res. 2023, 16, 10206–10214.

[24]

Ji, J. L.; Wang, Z. X.; Zhang, F.; Wang, B.; Niu, Y.; Jiang, X. N.; Qiao, Z. Y.; Ren, T. L.; Zhang, W. D.; Sang, S. B. et al. Pulse electrochemical synaptic transistor for supersensitive and ultrafast biosensors. InfoMat 2023, 5, e12478.

[25]

Yong, K.; De, S.; Hsieh, E. Y.; Leem, J.; Aluru, N. R.; Nam, S. Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 2020, 34, 58–65.

[26]

Kim, S. H.; Baek, G. W.; Yoon, J.; Seo, S.; Park, J.; Hahm, D.; Chang, J. H.; Seong, D.; Seo, H.; Oh, S. et al. A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 2021, 33, 2104690.

[27]

Guo, S. Q.; Wu, K. J.; Li, C. P.; Wang, H.; Sun, Z.; Xi, D. W.; Zhang, S.; Ding, W. P.; Zaghloul, M. E.; Wang, C. N. et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969–985.

[28]

Lee, H. C.; Hsieh, E. Y.; Yong, K.; Nam, S. Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 2020, 13, 1406–1412.

[29]

Zheng, Y.; Zhang, S.; Tok, J. B. H.; Bao, Z. N. Molecular design of stretchable polymer semiconductors: Current progress and future directions. J. Am. Chem. Soc. 2022, 144, 4699–4715.

[30]

Tien, H. C.; Li, X.; Liu, C. J.; Li, Y.; He, M. Q.; Lee, W. Y. Photo-patternable stretchable semi-interpenetrating polymer semiconductor network using thiol-ene chemistry for field-effect transistors. Adv. Funct. Mater. 2023, 33, 2211108.

[31]

Hsu, L. C.; Kobayashi, S.; Isono, T.; Chiang, Y. C.; Ree, B. J.; Satoh, T.; Chen, W. C. Highly stretchable semiconducting polymers for field-effect transistors through branched soft-hard-soft type triblock copolymers. Macromolecules 2020, 53, 7496–7510.

[32]

Koo, J. H.; Kang, J.; Lee, S.; Song, J. K.; Choi, J.; Yoon, J.; Park, H. J.; Sunwoo, S. H.; Kim, D. C.; Nam, W. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 2023, 6, 137–145.

[33]

Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H. C.; Kang, J.; Park, J.; Gu, X. D. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097.

[34]

Wang, X. M.; Li, E. L.; Liu, Y. Q.; Lan, S. Q.; Yang, H. H.; Yan, Y. J.; Shan, L. T.; Lin, Z. X.; Chen, H. P.; Guo, T. L. Stretchable vertical organic transistors and their applications in neurologically systems. Nano Energy 2021, 90, 106497.

[35]

Wang, Y. F.; Sun, Q. J.; Yu, J. R.; Xu, N.; Wei, Y. C.; Cho, J. H.; Wang, Z. L. Boolean logic computing based on neuromorphic transistor. Adv. Funct. Mater. 2023, 33, 2305791.

[36]

Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467

[37]

Chi, C.; An, M.; Qi, X.; Li, Y.; Zhang, R. H.; Liu, G. Z.; Lin, C. J.; Huang, H.; Dang, H.; Demir, B. et al. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat. Commun. 2022, 13, 221.

[38]

Song, J. K.; Kim, M. S.; Yoo, S.; Koo, J. H.; Kim, D. H. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 2021, 14, 2919–2937.

[39]

Chortos, A.; Lim, J.; To, J. W. F.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T. H.; Hwang, S.; Bao, Z. N. Highly stretchable transistors using a microcracked organic semiconductor. Adv. Mater. 2014, 26, 4253–4259.

[40]

Wang, W. C.; Wang, S. H.; Rastak, R.; Ochiai, Y.; Niu, S. M.; Jiang, Y. W.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150.

[41]

Kim, C. H.; Azimi, M.; Fan, J. X.; Nagarajan, H.; Wang, M. J.; Cicoira, F. All-printed and stretchable organic electrochemical transistors using a hydrogel electrolyte. Nanoscale 2023, 15, 3263–3272.

[42]

Zhu, P. C.; Luo, X. P.; Lin, X. R.; Qiu, Z. C.; Chen, R. R.; Wang, X. C.; Wang, Y. L.; Deng, Y.; Mao, Y. C. A self-healable, recyclable, and flexible thermoelectric device for wearable energy harvesting and personal thermal management. Energy Convers. Manage. 2023, 285, 117017.

Nano Research
Pages 6550-6559
Cite this article:
Zhu P, Mu S, Huang W, et al. Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor. Nano Research, 2024, 17(7): 6550-6559. https://doi.org/10.1007/s12274-024-6566-8
Topics:

868

Views

26

Crossref

35

Web of Science

34

Scopus

0

CSCD

Altmetrics

Received: 26 December 2023
Revised: 01 February 2024
Accepted: 14 February 2024
Published: 17 May 2024
© Tsinghua University Press 2024
Return