AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Spin chiral anisotropy of diamagnetic chiral mesostructured In2O3 films

Ting Ji1,§Quanzheng Deng2,§Hao Chen2Lu Han2( )Zhibei Qu3( )Shunai Che1( )Yingying Duan2( )
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China

§ Ting Ji and Quanzheng Deng contributed equally to this work.

Show Author Information

Graphical Abstract

Diamagnetic chiral mesostructured In2O3 films with two levels of chiral structures exhibit spin chiral anisotropy manifested as asymmetric chirality-dependent magnetic circular dichroism signals.

Abstract

Spin chiral anisotropy (SChA) refers to the occurrence of different spin polarization in antipodal chiral structures. Herein, we report the SChA in diamagnetic chiral mesostructured In2O3 films (CMIFs) with manifestation of chirality-dependent magnetic circular dichroism (MCD) signals. CMIFs were grown on fluorine-doped tin dioxide conductive glass (FTO) substrates, which were synthesized via a hydrothermal route, with malic acid used as the symmetry-breaking agent. Two levels of chirality have been identified in CMIFs: primary nanoflakes with atomically twisted crystal lattices and secondary helical stacking of the nanoflakes. CMIFs exhibit chirality-dependent asymmetric MCD signals due to the different interactions of chirality-induced effective magnetic field and external magnetic field, which distinguish from the commonly observed external magnetic field-dependent symmetric MCD signals. These findings provide insights into spin manipulation of spin-paired diamagnets.

Electronic Supplementary Material

Download File(s)
6572_ESM.pdf (2.6 MB)

References

[1]

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

[2]

Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

[3]

Banerjee, N.; Smiet, C. B.; Smits, R. G. J.; Ozaeta, A.; Bergeret, F. S.; Blamire, M. G.; Robinson, J. W. A. Evidence for spin selectivity of triplet pairs in superconducting spin valves. Nat. Commun. 2014, 5, 3048.

[4]

Kharchenko, N. F.; Khrustalev, V. M.; Savitskiĭ, V. N. Magnetic field induced spin reorientation in the strongly anisotropic antiferromagnetic crystal LiCoPO4. Low Temp. Phys. 2010, 36, 558–564.

[5]

Han, B.; Gao, X. Q.; Lv, J. W.; Tang, Z. Y. Magnetic circular dichroism in nanomaterials: New opportunity in understanding and modulation of excitonic and plasmonic resonances. Adv. Mater. 2020, 32, 1801491.

[6]

Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816.

[7]

Yang, S. H.; Naaman, R.; Paltiel, Y.; Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 2021, 3, 328–343.

[8]

Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.

[9]

Liu, Z. X.; Ai, J.; Bai, T.; Fang, Y. X.; Ding, K.; Duan, Y. Y.; Han, L.; Che, S. N. Photomagnetic-chiral anisotropy of chiral nanostructured gold films. Chem 2022, 8, 186–196.

[10]

Ding, K.; Ai, J.; Chen, H.; Qu, Z. B.; Liu, P. Z.; Han, L.; Che, S. N.; Duan, Y. Y. Spin selectivity of chiral mesostructured diamagnetic BiOBr films. Nano Res. 2023, 16, 11444–11449.

[11]

Bai, T.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Spin selectivity of chiral mesostructured iron oxides with different magnetisms. Small 2022, 18, 2104509.

[12]

Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.

[13]

Mishra, S.; Mondal, A. K.; Pal, S.; Das, T. K.; Smolinsky, E. Z. B.; Siligardi, G.; Naaman, R. Length-dependent electron spin polarization in oligopeptides and DNA. J. Phys. Chem. C 2020, 124, 10776–10782.

[14]

Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

[15]

Giovanni, D.; Chong, W. K.; Dewi, H. A.; Thirumal, K.; Neogi, I.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2016, 2, e1600477.

[16]

Zheng, R. J.; Zhang, M.; Sun, X.; Chen, R. P.; Sun, X. Perylene-3,4,9,10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl. Catal. B Environ. 2019, 254, 667–676.

[17]

Qi, J.; Liu, J. F.; He, Y.; Chen, W.; Wang, C. Compression behavior and phase transition of cubic In2O3 nanocrystals. J. Appl. Phys. 2011, 109, 063520.

[18]

Babu, S. H.; Kaleemulla, S.; Rao, N. M.; Krishnamoorthi, C. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications. J. Magn. Magn. Mater. 2016, 416, 66–74.

[19]

Narang, S. B.; Pubby, K. Nickel spinel ferrites: A review. J. Magn. Magn. Mater. 2021, 519, 167163.

[20]

Hurd, C. M. Varieties of magnetic order in solids. Contemp. Phys. 1982, 23, 469–493.

[21]

Mukherji, R.; Mathur, V.; Samariya, A.; Mukherji, M. Experimental and theoretical assessment of Fe-doped indium-oxide-based dilute magnetic semiconductors. Philos. Mag. 2019, 99, 2285–2302.

[22]

Horvat, A.; Žitko, R.; Mravlje, J. Spin-orbit coupling in three-orbital Kanamori impurity model and its relevance for transition-metal oxides. Phys. Rev. B 2017, 96, 085122.

[23]

Fujiyama, S.; Ohsumi, H.; Komesu, T.; Matsuno, J.; Kim, B. J.; Takata, M.; Arima, T.; Takagi, H. Two-dimensional Heisenberg behavior of Jeff = 1/2 isospins in the paramagnetic state of the spin-orbital Mott insulator Sr2IrO4. Phys. Rev. Lett. 2012, 108, 247212.

[24]

Liu, D.; Lei, W. W.; Qin, S.; Hou, L. T.; Liu, Z. W.; Cui, Q. L.; Chen, Y. Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. J. Mater. Chem. A 2013, 1, 5274–5278.

[25]

Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. G. et al. Optically active nanostructured ZnO films. Angew. Chem., Int. Ed. 2015, 54, 15170–15175.

[26]

Gan, J. Y.; Lu, X. H.; Wu, J. H.; Xie, S. L.; Zhai, T.; Yu, M. H.; Zhang, Z. S.; Mao, Y. C.; Wang, S. C. I.; Shen, Y. et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021.

[27]

Robbie, K.; Broer, D. J.; Brett, M. J. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 1999, 399, 764–766.

[28]

Khamkongkaeo, A.; Mothaneeyachart, N.; Sriwattana, P.; Boonchuduang, T.; Phetrattanarangsi, T.; Thongchai, C.; Sakkomolsri, B.; Pimsawat, A.; Daengsakul, S.; Phumying, S. et al. Ferromagnetism and diamagnetism behaviors of MgO synthesized via thermal decomposition method. J. Alloys Compd. 2017, 705, 668–674.

[29]

Ando, K. Seeking room-temperature ferromagnetic semiconductors. Science 2006, 312, 1883–1885.

[30]

Stamokostas, G. L.; Fiete, G. A. Mixing of t2 g e g orbitals in 4 d and 5 d transition metal oxides. Phys. Rev. B 2018, 97, 085150.

[31]

Zhang, B. W.; Ai, J.; Duan, Y. Y.; Bai, T.; Han, L.; Che, S. N. Chiral mesostructured hematite with temperature-independent magnetism due to spin confinement. Nano Res. 2024, 17, 2019–2024.

[32]

Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

[33]

Yang, P.; Deng, Q. Z.; Duan, Y. Y.; Liu, Z. X.; Fang, Y. X.; Han, L.; Che, S. N. Chiral nanostructured bimetallic Au–Ag films for enantiomeric discrimination. Adv. Mater. Interfaces 2022, 9, 2200369.

[34]

Liu, Z. X.; Deng, Q. Z.; Han, L.; Che, S. N.; Duan, Y. Y. Spin selectivity-based enantiomeric discrimination by chiral nanostructured Au films. J. Phys. Chem. C 2023, 127, 9097–9104.

[35]

Ozturk, S. F.; Sasselov, D. D. On the origins of life’s homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc. Natl. Acad. Sci. USA 2022, 119, e2204765119.

Nano Research
Pages 7756-7761
Cite this article:
Ji T, Deng Q, Chen H, et al. Spin chiral anisotropy of diamagnetic chiral mesostructured In2O3 films. Nano Research, 2024, 17(8): 7756-7761. https://doi.org/10.1007/s12274-024-6572-y
Topics:

428

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 31 December 2023
Revised: 03 February 2024
Accepted: 12 February 2024
Published: 22 June 2024
© Tsinghua University Press 2024
Return