Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Spin chiral anisotropy (SChA) refers to the occurrence of different spin polarization in antipodal chiral structures. Herein, we report the SChA in diamagnetic chiral mesostructured In2O3 films (CMIFs) with manifestation of chirality-dependent magnetic circular dichroism (MCD) signals. CMIFs were grown on fluorine-doped tin dioxide conductive glass (FTO) substrates, which were synthesized via a hydrothermal route, with malic acid used as the symmetry-breaking agent. Two levels of chirality have been identified in CMIFs: primary nanoflakes with atomically twisted crystal lattices and secondary helical stacking of the nanoflakes. CMIFs exhibit chirality-dependent asymmetric MCD signals due to the different interactions of chirality-induced effective magnetic field and external magnetic field, which distinguish from the commonly observed external magnetic field-dependent symmetric MCD signals. These findings provide insights into spin manipulation of spin-paired diamagnets.
Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.
Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.
Banerjee, N.; Smiet, C. B.; Smits, R. G. J.; Ozaeta, A.; Bergeret, F. S.; Blamire, M. G.; Robinson, J. W. A. Evidence for spin selectivity of triplet pairs in superconducting spin valves. Nat. Commun. 2014, 5, 3048.
Kharchenko, N. F.; Khrustalev, V. M.; Savitskiĭ, V. N. Magnetic field induced spin reorientation in the strongly anisotropic antiferromagnetic crystal LiCoPO4. Low Temp. Phys. 2010, 36, 558–564.
Han, B.; Gao, X. Q.; Lv, J. W.; Tang, Z. Y. Magnetic circular dichroism in nanomaterials: New opportunity in understanding and modulation of excitonic and plasmonic resonances. Adv. Mater. 2020, 32, 1801491.
Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816.
Yang, S. H.; Naaman, R.; Paltiel, Y.; Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 2021, 3, 328–343.
Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.
Liu, Z. X.; Ai, J.; Bai, T.; Fang, Y. X.; Ding, K.; Duan, Y. Y.; Han, L.; Che, S. N. Photomagnetic-chiral anisotropy of chiral nanostructured gold films. Chem 2022, 8, 186–196.
Ding, K.; Ai, J.; Chen, H.; Qu, Z. B.; Liu, P. Z.; Han, L.; Che, S. N.; Duan, Y. Y. Spin selectivity of chiral mesostructured diamagnetic BiOBr films. Nano Res. 2023, 16, 11444–11449.
Bai, T.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Spin selectivity of chiral mesostructured iron oxides with different magnetisms. Small 2022, 18, 2104509.
Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.
Mishra, S.; Mondal, A. K.; Pal, S.; Das, T. K.; Smolinsky, E. Z. B.; Siligardi, G.; Naaman, R. Length-dependent electron spin polarization in oligopeptides and DNA. J. Phys. Chem. C 2020, 124, 10776–10782.
Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.
Giovanni, D.; Chong, W. K.; Dewi, H. A.; Thirumal, K.; Neogi, I.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2016, 2, e1600477.
Zheng, R. J.; Zhang, M.; Sun, X.; Chen, R. P.; Sun, X. Perylene-3,4,9,10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl. Catal. B Environ. 2019, 254, 667–676.
Qi, J.; Liu, J. F.; He, Y.; Chen, W.; Wang, C. Compression behavior and phase transition of cubic In2O3 nanocrystals. J. Appl. Phys. 2011, 109, 063520.
Babu, S. H.; Kaleemulla, S.; Rao, N. M.; Krishnamoorthi, C. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications. J. Magn. Magn. Mater. 2016, 416, 66–74.
Narang, S. B.; Pubby, K. Nickel spinel ferrites: A review. J. Magn. Magn. Mater. 2021, 519, 167163.
Hurd, C. M. Varieties of magnetic order in solids. Contemp. Phys. 1982, 23, 469–493.
Mukherji, R.; Mathur, V.; Samariya, A.; Mukherji, M. Experimental and theoretical assessment of Fe-doped indium-oxide-based dilute magnetic semiconductors. Philos. Mag. 2019, 99, 2285–2302.
Horvat, A.; Žitko, R.; Mravlje, J. Spin-orbit coupling in three-orbital Kanamori impurity model and its relevance for transition-metal oxides. Phys. Rev. B 2017, 96, 085122.
Fujiyama, S.; Ohsumi, H.; Komesu, T.; Matsuno, J.; Kim, B. J.; Takata, M.; Arima, T.; Takagi, H. Two-dimensional Heisenberg behavior of Jeff = 1/2 isospins in the paramagnetic state of the spin-orbital Mott insulator Sr2IrO4. Phys. Rev. Lett. 2012, 108, 247212.
Liu, D.; Lei, W. W.; Qin, S.; Hou, L. T.; Liu, Z. W.; Cui, Q. L.; Chen, Y. Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. J. Mater. Chem. A 2013, 1, 5274–5278.
Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. G. et al. Optically active nanostructured ZnO films. Angew. Chem., Int. Ed. 2015, 54, 15170–15175.
Gan, J. Y.; Lu, X. H.; Wu, J. H.; Xie, S. L.; Zhai, T.; Yu, M. H.; Zhang, Z. S.; Mao, Y. C.; Wang, S. C. I.; Shen, Y. et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021.
Robbie, K.; Broer, D. J.; Brett, M. J. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 1999, 399, 764–766.
Khamkongkaeo, A.; Mothaneeyachart, N.; Sriwattana, P.; Boonchuduang, T.; Phetrattanarangsi, T.; Thongchai, C.; Sakkomolsri, B.; Pimsawat, A.; Daengsakul, S.; Phumying, S. et al. Ferromagnetism and diamagnetism behaviors of MgO synthesized via thermal decomposition method. J. Alloys Compd. 2017, 705, 668–674.
Ando, K. Seeking room-temperature ferromagnetic semiconductors. Science 2006, 312, 1883–1885.
Stamokostas, G. L.; Fiete, G. A. Mixing of t2 g – e g orbitals in 4 d and 5 d transition metal oxides. Phys. Rev. B 2018, 97, 085150.
Zhang, B. W.; Ai, J.; Duan, Y. Y.; Bai, T.; Han, L.; Che, S. N. Chiral mesostructured hematite with temperature-independent magnetism due to spin confinement. Nano Res. 2024, 17, 2019–2024.
Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.
Yang, P.; Deng, Q. Z.; Duan, Y. Y.; Liu, Z. X.; Fang, Y. X.; Han, L.; Che, S. N. Chiral nanostructured bimetallic Au–Ag films for enantiomeric discrimination. Adv. Mater. Interfaces 2022, 9, 2200369.
Liu, Z. X.; Deng, Q. Z.; Han, L.; Che, S. N.; Duan, Y. Y. Spin selectivity-based enantiomeric discrimination by chiral nanostructured Au films. J. Phys. Chem. C 2023, 127, 9097–9104.
Ozturk, S. F.; Sasselov, D. D. On the origins of life’s homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc. Natl. Acad. Sci. USA 2022, 119, e2204765119.