AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Piperazine-derived ionizable lipids for enhanced mRNA delivery and cancer immunotherapy

Kai Xu1,2,§Yujia Xu1,§Jin Sun2Xinwei Cheng2Chenxi Lu1Wenzhong Chen2Bingfang He1( )Tianyue Jiang1( )
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
Department of Nano Formulation, Nanjing GeneLeap Biotechnology, Nanjing 210061, China

§ Kai Xu and Yujia Xu contributed equally to this work.

Show Author Information

Graphical Abstract

In this study, we design and screen a series of piperazine-derived ionizable lipids for enhanced messenger ribonucleic acid (mRNA) transfection activity. Among them, lipid nanoparticle (LNP) formulated with lipid 10 (L10-LNP) can efficiently package mRNA and perform superior transfection efficiency both in vitro and in vivo.

Abstract

Messenger ribonucleic acid (mRNA)-based therapeutics hold great prospects in disease treatment and lipid nanoparticles (LNPs) are the most extensively applied non-viral platform for RNA delivery in clinics. Despite the clinical success of LNPs as vehicles have been achieved, developing LNPs with enhanced mRNA transmembrane delivery and transfection efficiency in a non-toxic manner is highly desirable and challenging. In this study, we designed a series of new ionizable amino lipids with piperazine-derived headgroups and constructed a group of LNPs to promote the transfection activity of mRNA cargos. Among them, LNP formulated with lipid 10 (L10-LNP) can efficiently package mRNA and perform superior transfection efficiency both in vitro and in vivo, which is mainly attributed to the improved intracellular uptake and effective endosomal escape. We verified that a single administration of L10-LNP packaging interleukin (IL)-12 mRNA induced tumor shrink and even regression by robust activation of immune effector CD8+ T cells and stimulating the generation of IFN-γ without causing systemic toxicity, which provides a promising platform for clinical cancer immunotherapy.

Electronic Supplementary Material

Download File(s)
12274_6575_ESM.pdf (5.3 MB)

References

[1]

Zhu, Y. R.; Zhu, L. Y.; Wang, X.; Jin, H. C. RNA-based therapeutics: An overview and prospectus. Cell Death Dis. 2022, 13, 644.

[2]

Zhang, M. J.; Hussain, A.; Yang, H. Y.; Zhang, J. C.; Liang, X. J.; Huang, Y. Y. mRNA-based modalities for infectious disease management. Nano Res. 2023, 16, 672–691

[3]

Sun, H.; Zhang, Y.; Wang, G.; Yang, W.; Xu, Y. J. mRNA-based therapeutics in cancer treatment. Pharmaceutics 2023, 15, 622

[4]

Nitika; Wei, J.; Hui, A. M. The delivery of mRNA vaccines for therapeutics. Life 2022, 12, 1254.

[5]

Weide, B.; Carralot, J. P.; Reese, A.; Scheel, B.; Eigentler, T. K.; Hoerr, I.; Rammensee, H. G.; Garbe, C.; Pascolo, S. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother. 2008, 31, 180–188.

[6]

Cullis, P. R.; Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467–1475.

[7]

Liu, J. Q.; Zhang, C. X.; Zhang, X. F.; Yan, J. Y.; Zeng, C. X.; Talebian, F.; Lynch, K.; Zhao, W. Y.; Hou, X. C.; Du, S. et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control. Release 2022, 345, 306–313.

[8]

Zeng, C. X.; Zhang, C. X.; Walker, P. G.; Dong, Y. Z. Formulation and delivery technologies for mRNA vaccines. In mRNA Vaccines; Yu, D.; Petsch, B., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp 71–110.

[9]

Kannan, S.; Kolhe, P.; Raykova, V.; Glibatec, M.; Kannan, R. M.; Lieh-Lai, M.; Bassett, D. Dynamics of cellular entry and drug delivery by dendritic polymers into human lung epithelial carcinoma cells. J. Biomater. Sci. Polym. Ed. 2004, 15, 311–330.

[10]

Persano, S.; Guevara, M. L.; Li, Z. Q.; Mai, J. H.; Ferrari, M.; Pompa, P. P.; Shen, H. F. Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials 2017, 125, 81–89.

[11]

Yang, R.; Deng, Y.; Huang, B. Y.; Huang, L.; Lin, A.; Li, Y. H.; Wang, W. L.; Liu, J. J.; Lu, S. Y.; Zhan, Z. Z. et al. A core–shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduct. Target. Ther. 2021, 6, 213.

[12]

Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416.

[13]

Skowronski, D. M.; De Serres, G. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 2021, 384, 1576–1577.

[14]

Oh, J.; Kim, S. M.; Lee, E. H.; Kim, M.; Lee, Y.; Ko, S. H.; Jeong, J. H.; Park, C. H.; Lee, M. Messenger RNA/polymeric carrier nanoparticles for delivery of heme oxygenase-1 gene in the post-ischemic brain. Biomater. Sci. 2020, 8, 3063–3071.

[15]

Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100–109.

[16]

Hou, X. C.; Zaks, T.; Langer, R.; Dong, Y. Z. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094.

[17]

Semple, S. C.; Akinc, A.; Chen, J. X.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W. Y.; Stebbing, D.; Crosley, E. J.; Yaworski, E. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176.

[18]

Jayaraman, M.; Ansell, S. M.; Mui, B. L.; Tam, Y. K.; Chen, J. X.; Du, X. Y.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J. K. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem., Int. Ed. 2012, 51, 8529–8533.

[19]

Buschmann, M. D.; Carrasco, M. J.; Alishetty, S.; Paige, M.; Alameh, M. G.; Weissman, D. Nanomaterial delivery systems for mRNA vaccines. Vaccines (Basel). 2021, 9, 65.

[20]

El Moukhtari, S. H.; Garbayo, E.; Amundarain, A.; Pascual-Gil, S.; Carrasco-León, A.; Prosper, F.; Agirre, X.; Blanco-Prieto, M. J. Lipid nanoparticles for siRNA delivery in cancer treatment. J Control Release. 2023, 361, 130–146.

[21]

Zhang, X. P.; Goel, V.; Attarwala, H.; Sweetser, M. T.; Clausen, V. A.; Robbie, G. J. Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. J. Clin. Pharmacol. 2020, 60, 37–49.

[22]

Schoenmaker, L.; Witzigmann, D.; Kulkarni, J. A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D. J. A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021, 601, 120586

[23]

Lamson, N. G.; Cusimano, G.; Suri, K.; Zhang, A. N.; Whitehead, K. A. The pH of piperazine derivative solutions predicts their utility as transepithelial permeation enhancers. Mol. Pharm. 2016, 13, 578–585.

[24]

Karande, P.; Jain, A.; Mitragotri, S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 2004, 22, 192–197.

[25]

Whitehead, K.; Karr, N.; Mitragotri, S. Safe and effective permeation enhancers for oral drug delivery. Pharm. Res. 2008, 25, 1782–1788.

[26]

Ni, H. Z.; Hatit, M. Z. C.; Zhao, K.; Loughrey, D.; Lokugamage, M. P.; Peck, H. E.; Cid, A. D.; Muralidharan, A.; Kim, Y.; Santangelo, P. J. et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo. Nat. Commun. 2022, 13, 4766.

[27]

Ramishetti, S.; Hazan-Halevy, I.; Palakuri, R.; Chatterjee, S.; Naidu Gonna, S.; Dammes, N.; Freilich, I.; Kolik Shmuel, L.; Danino, D.; Peer, D. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv. Mater. 2020, 32, 1906128.

[28]

Sabnis, S.; Kumarasinghe, E. S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J. J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J. et al. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 2018, 26, 1509–1519.

[29]

Maeki, M.; Uno, S.; Niwa, A.; Okada, Y.; Tokeshi, M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 2022, 344, 80–96.

[30]

Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146.

[31]

Berraondo, P.; Sanmamed, M. F.; Ochoa, M. C.; Etxeberria, I.; Aznar, M. A.; Pérez-Gracia, J. L.; Rodríguez-Ruiz, M. E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 2019, 120, 6–15.

[32]

Brunda, M. J.; Luistro, L.; Warrier, R. R.; Wright, R. B.; Hubbard, B. R.; Murphy, M.; Wolf, S. F.; Gately, M. K. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 1993, 178, 1223–1230.

[33]

Nastala, C. L.; Edington, H. D.; McKinney, T. G.; Tahara, H.; Nalesnik, M. A.; Brunda, M. J.; Gately, M. K.; Wolf, S. F.; Schreiber, R. D.; Storkus, W. J. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J. Immunol. 1994, 153, 1697–1706.

[34]

Fisher, R. K.; Mattern-Schain, S. I.; Best, M. D.; Kirkpatrick, S. S.; Freeman, M. B.; Grandas, O. H.; Mountain, D. J. H. Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. J. Surg. Res. 2017, 219, 136–144.

[35]

Heyes, J.; Palmer, L.; Bremner, K.; MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Release 2005, 107, 276–287.

[36]

Suzuki, Y.; Ishihara, H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab. Pharmacokinet. 2021, 41, 100424.

[37]

Raffaele, J.; Loughney, J. W.; Rustandi, R. R. Development of a microchip capillary electrophoresis method for determination of the purity and integrity of mRNA in lipid nanoparticle vaccines. Electrophoresis 2022, 43, 1101–1106.

[38]

Kang, M. H.; Moon, S. U.; Sung, J. H.; Kim, J. W.; Lee, K. W.; Lee, H. S.; Lee, J. S.; Kim, J. H. Antitumor activity of HM781-36B, alone or in combination with chemotherapeutic agents, in colorectal cancer cells. Cancer Res. Treat. 2016, 48, 355–364.

[39]

Hassett, K. J.; Benenato, K. E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B. M.; Ketova, T. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 2019, 15, 1–11.

[40]
Ansell, S. M.; Du, X. Y. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids: U.S. Patent 2017075531A1, October 28, 2015.
[41]

Bolsoni, J.; Liu, D.; Mohabatpour, F.; Ebner, R.; Sadhnani, G.; Tafech, B.; Leung, J.; Shanta, S.; An, K.; Morin, T. et al. Lipid nanoparticle-mediated hit-and-run approaches yield efficient and safe in situ gene editing in human skin. ACS Nano 2023, 21, 22046–22059.

[42]

Sato, Y.; Hashiba, K.; Sasaki, K.; Maeki, M.; Tokeshi, M.; Harashima, H. Understanding structure–activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J. Control. Release 2019, 295, 140–152.

[43]

Sahay, G.; Querbes, W.; Alabi, C.; Eltoukhy, A.; Sarkar, S.; Zurenko, C.; Karagiannis, E.; Love, K.; Chen, D. L.; Zoncu, R. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 2013, 31, 653–658.

[44]

Maugeri, M.; Nawaz, M.; Papadimitriou, A.; Angerfors, A.; Camponeschi, A.; Na, M.; Hölttä, M.; Skantze, P.; Johansson, S.; Sundqvist, M. et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. 2019, 10, 4333.

[45]

Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646.

Nano Research
Pages 7357-7364
Cite this article:
Xu K, Xu Y, Sun J, et al. Piperazine-derived ionizable lipids for enhanced mRNA delivery and cancer immunotherapy. Nano Research, 2024, 17(8): 7357-7364. https://doi.org/10.1007/s12274-024-6575-8
Topics:

612

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 03 December 2023
Revised: 15 February 2024
Accepted: 19 February 2024
Published: 30 May 2024
© Tsinghua University Press 2024
Return