AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Gate-controlled supercurrent effect in dry-etched Dayem bridges of non-centrosymmetric niobium rhenium

Jennifer Koch1Carla Cirillo2Sebastiano Battisti3Leon Ruf1Zahra Makhdoumi Kakhaki4Alessandro Paghi3Armen Gulian5Serafim Teknowijoyo5Giorgio De Simoni3Francesco Giazotto3Carmine Attanasio4Elke Scheer1( )Angelo Di Bernardo1,4( )
Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
CNR-Spin, c/o Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
Dipartimento di Fisica “E. R. Caianiello”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
Advanced Physics Laboratory, Institute for Quantum Studies, Chapman University, Burtonsville, MD 20866, USA
Show Author Information

Graphical Abstract

We report on three-terminal devices made from the non-centrosymmetric superconductor NbRe, which show a reversible control of their supercurrent Ic via an applied gate voltage VG. Unlike other devices reported before, these NbRe devices systematically show the effect even when made with a top-down fabrication protocol. We identify the surface and physical properties that are key to achieve this result and report a first top-down fabrication protocol to scale up gate-controlled superconducting devices.

Abstract

The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction, named as gate-controlled supercurrent (GCS), has raised great interest for fundamental and technological reasons. To gain a deeper understanding of this effect and develop superconducting technologies based on it, the material and physical parameters crucial for the GCS effect must be identified. Top-down fabrication protocols should also be optimized to increase device scalability, although studies suggest that top-down fabricated devices are more resilient to show a GCS. Here, we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of the non-centrosymmetric superconductor niobium rhenium with varying ratios of the constituents (NbRe). Unlike other devices previously reported and made with a top-down approach, our NbRe devices systematically exhibit a GCS effect when they were fabricated from NbRe thin films with small grain size and etched in specific conditions. These observations pave the way for the realization of top-down-made GCS devices with high scalability. Our results also imply that physical parameters like structural disorder and surface physical properties of the nanobridges, which can be in turn modified by the fabrication process, are crucial for a GCS observation, providing therefore also important insights into the physics underlying the GCS effect.

Electronic Supplementary Material

Download File(s)
6576_ESM.pdf (989.7 KB)

References

[1]

De Simoni, G.; Paolucci, F.; Solinas, P.; Strambini, E.; Giazotto, F. Metallic supercurrent field-effect transistor. Nat. Nanotechnol. 2018, 13, 802–805.

[2]

De Simoni, G.; Paolucci, F.; Puglia, C.; Giazotto, F. Josephson field-effect transistors based on all-metallic Al/Cu/Al proximity nanojunctions. ACS Nano 2019, 13, 7871–7876.

[3]

Paolucci, F.; Vischi, F.; De Simoni, G.; Guarcello, C.; Solinas, P.; Giazotto, F. Field-effect controllable metallic Josephson interferometer. Nano Lett. 2019, 19, 6263–6269.

[4]

Paolucci, F.; De Simoni, G.; Solinas, P.; Strambini, E.; Ligato, N.; Virtanen, P.; Braggio, A.; Giazotto, F. Magnetotransport experiments on fully metallic superconducting Dayem-bridge field-effect transistors. Phys. Rev. Appl. 2019, 11, 024061.

[5]

Paolucci, F.; De Simoni, G.; Solinas, P.; Strambini, E.; Puglia, C.; Ligato, N.; Giazotto, F. Field-effect control of metallic superconducting systems. AVS Quantum Sci. 2019, 1, 016501.

[6]

De Simoni, G.; Puglia, C.; Giazotto, F. Niobium Dayem nano-bridge Josephson gate-controlled transistors. Appl. Phys. Lett. 2020, 116, 242601.

[7]

Bours, L.; Mercaldo, M. T.; Cuoco, M.; Strambini, E.; Giazotto F. Unveiling mechanisms of electric field effects on superconductors by a magnetic field response. Phys. Rev. Res. 2020, 2, 033353.

[8]

Puglia, C.; De Simoni, G.; Ligato, N.; Giazotto, F. Vanadium gate-controlled Josephson half-wave nanorectifier. Appl. Phys. Lett. 2020, 116, 252601.

[9]

Puglia, C.; De Simoni, G.; Giazotto, F. Electrostatic control of phase slips in Ti Josephson nanotransistors. Phys. Rev. Appl. 2020, 13, 054026.

[10]

Rocci, M.; De Simoni, G.; Puglia, C.; Degli Esposti, D.; Strambini, E.; Zannier, V.; Sorba, L.; Giazotto, F. Gate-controlled suspended titanium nanobridge supercurrent transistor. ACS Nano 2020, 14, 12621–12628.

[11]

De Simoni, G.; Battisti, S.; Ligato, N.; Mercaldo, M. T.; Cuoco, M.; Giazotto, F. Gate control of the current-flux relation of a Josephson quantum interferometer based on proximitized metallic nanojuntions. ACS Appl. Electron. Mater. 2021, 3, 3927–3935.

[12]

Paolucci, F.; Crisa, F.; De Simoni, G.; Bours, L.; Puglia, C.; Strambini, E.; Roddaro, S.; Giazotto, F. Electrostatic field-driven supercurrent suppression in ionic-gated metallic superconducting nanotransistors. Nano Lett. 2021, 21, 10309–10314.

[13]

Ritter, M. F.; Fuhrer, A.; Haxell, D. Z.; Hart, S.; Gumann, P.; Riel, H.; Nichele, F. A superconducting switch actuated by injection of high-energy electrons. Nat. Commun. 2021, 12, 1266.

[14]

Alegria, L. D.; Bøttcher, C. G. L.; Saydjari, A. K.; Pierce, A. T.; Lee, S. H.; Harvey, S. P.; Vool, U.; Yacoby, A. High-energy quasiparticle injection into mesoscopic superconductors. Nat. Nanotechnol. 2021, 16, 404–408.

[15]

Golokolenov, I.; Guthrie, A.; Kafanov, S.; Pashkin, Y. A.; Tsepelin, V. On the origin of the controversial electrostatic field effect in superconductors. Nat. Commun. 2021, 12, 2747.

[16]

Elalaily, T.; Kürtössy, O.; Scherübl, Z.; Berke, M.; Fülöp, G.; Lukács, I. E.; Kanne, T.; Nygård, J.; Watanabe, K.; Taniguchi, T. et al. Gate-controlled supercurrent in epitaxial Al/InAs nanowires. Nano Lett. 2021, 21, 9684–9690.

[17]

Basset, J.; Stanisavljevic, O.; Kuzmanovic, M.; Gabelli, J.; Quay, C. H. L.; Estève, J.; Aprili, M. Gate-assisted phase fluctuations in all-metallic Josephson junctions. Phys. Rev. Res. 2021, 3, 043169.

[18]

Orús, P.; Fomin, V. M.; De Teresa, J. M.; Córdoba, R. Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires. Sci. Rep. 2021, 11, 17698.

[19]

Rocci, M.; Suri, D.; Kamra, A.; Vilela, G.; Takamura, Y.; Nemes, N. M.; Martinez, J. L.; Hernandez, M. G.; Moodera, J. S. Large enhancement of critical current in superconducting devices by gate voltage. Nano Lett. 2021, 21, 216–221.

[20]

Ritter, M. F.; Crescini, N.; Haxell, D. Z.; Hinderling, M.; Riel, H.; Bruder, C.; Fuhrer, A.; Nichele, F. Out-of-equilibrium phonons in gated superconducting switches. Nat. Electron. 2022, 5, 71–77.

[21]

Catto, G.; Liu, W.; Kundu, S.; Lahtinen, V.; Vesterinen, V.; Möttönen, M. Microwave response of a metallic superconductor subject to a high-voltage gate electrode. Sci. Rep. 2022, 12, 6822.

[22]

Elalaily, T.; Berke, M.; Kedves, M.; Fülöp, G.; Scherübl, Z.; Kanne, T.; Nygård, J.; Makk, P.; Csonka, S. Signatures of gate-driven out-of-equilibrium superconductivity in Ta/InAs nanowires. ACS Nano 2023, 17, 5528–5535.

[23]

Ruf, L.; Elalaily, T.; Puglia, C.; Ivanov, Y. P.; Joint, F.; Berke, M.; Iorio, A.; Makk, P.; De Simoni, G.; Gasparinetti, S. et al. Effects of fabrication routes and material parameters on the control of superconducting currents by gate voltage. APL Mater. 2023, 11, 091113.

[24]

Yu, S.; Chen, L.; Pan, Y.; Wang, Y.; Zhang, D.; Wu, G.; Fan, X.; Liu, X.; Wu, L.; Zhang, L. et al. Gate-tunable critical current of the three-dimensional niobium nanobridge Josephson junction. Nano Lett. 2023, 23, 8043.

[25]

Ruf, L.; Puglia, C.; Elalaily, T.; De Simoni, G.; Joint, F.; Berke, M.; Koch, J.; Iorio, A.; Khorshidian, S.; Makk, P. et al. Gate-control of superconducting current: Mechanisms, parameters and technological potential. arXiv: 2302, 13734, 2023.

[26]

Fowler, R. H.; Nordheim, L. Electron emission in intense electric fields. Proc. Roy. Soc. A 1928, 119, 173–181.

[27]

Mercaldo, M. T.; Solinas, P.; Giazotto, F.; Cuoco, M. Electrically tunable superconductivity through surface orbital polarization. Phys. Rev. Appl. 2020, 14, 034041.

[28]

Mercaldo, M. T.; Giazotto, F.; Cuoco, M. Spectroscopic signatures of gate-controlled superconducting phases. Phys. Rev. Res. 2021, 3, 043042.

[29]

Amoretti, A.; Brattan, D. K.; Magnoli, N.; Martinoia, L.; Matthaiakakis, I.; Solinas, P. Destroying superconductivity in thin films with an electric field. Phys. Rev. Res. 2022, 4, 033211.

[30]

Chakraborty, S.; Nikolić, D.; Cuevas, J. C.; Giazotto, F.; Di Bernardo, A.; Scheer, E.; Cuoco, M.; Belzig, W. Microscopic theory of supercurrent suppression by gate-controlled surface depairing. Phys. Rev. B 2023, 108, 184508.

[31]

Chen, W.; Rylyakov, A. V.; Patel, V.; Lukens, J. E.; Likharev, K. K. Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond. 1999, 9, 3212–3215.

[32]

Likharev, K. K.; Semenov, V. K. RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1991, 1, 3–28.

[33]
Kursun, V.; Friedman, E. G. Multi-Voltage CMOS Circuit Design; John Wiley & Sons, Ltd.: Chichester, 2006.
[34]
Kaeslin, H. Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication; Cambridge University Press: Cambridge, 2008.
[35]

Zikiy, E. V.; Ivanov, A. I.; Smirnov, N. S.; Moskalev, D. O.; Polozov, V. I.; Matanin, A. R.; Malevannaya, E. I.; Echeistov, V. V.; Konstantinova, T. G.; Rodionov, I. A. High-Q trenched aluminum coplanar resonators with an ultrasonic edge microcutting for superconducting quantum devices. Sci. Rep. 2023, 13, 15536.

[36]

Cirillo, C.; Caputo, M.; Divitini, G.; Robinson, J. W. A.; Attanasio, C. Polycrystalline NbRe superconducting films deposited by direct current magnetron sputtering. Thin Solid Films 2022, 758, 139450.

[37]

Cirillo, C.; Fittipaldi, R.; Smidman, M.; Carapella, G.; Attanasio, C.; Vecchione, A.; Singh, R. P.; Lees, M. R.; Balakrishnan, G.; Cuoco, M. Evidence of double-gap superconductivity in noncentrosymmetric Nb0.18Re0.82 single crystals. Phys. Rev. B 2015, 91, 134508.

[38]

Smidman, M.; Salamon, M. B.; Yuan, H. Q.; Agterberg, D. F. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review. Rep. Prog. Phys. 2017, 80, 036501.

[39]

Cirillo, C.; Carapella, G.; Salvato, M.; Arpaia, R.; Caputo, M.; Attanasio, C. Superconducting properties of noncentrosymmetric Nb0.18Re0.82 thin films probed by transport and tunneling experiments. Phys. Rev. B 2016, 94, 104512.

[40]

Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1918, 1918, 98–100.

[41]

Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 1979, 51, 101–159.

[42]

Karki, A. B.; Xiong, Y. M.; Haldolaarachchige, N.; Stadler, S.; Vekhter, I.; Adams, P. W.; Young, D. P.; Phelan, W. A.; Chan, J. Y. Physical properties of the noncentrosymmetric superconductor Nb0.18Re0.82. Phys. Rev. B 2011, 83, 144525.

[43]

Nigro, A.; Nobile, G.; Rubino, M. G.; Vaglio, R. Electrical resistivity of polycrystalline niobium nitride films. Phys. Rev. B 1988, 37, 3970–3972.

[44]

Marsili, F.; Gaggero, A.; Li, L. H.; Surrente, A.; Leoni, R.; Lévy, F.; Fiore, A. High quality superconducting NbN thin films on GaAs. Supercond. Sci. Technol. 2009, 22, 095013.

[45]

Colton, R. Technetium chlorides. Nature 1962, 193, 872–873.

[46]

Woolf, A. A. An outline of rhenium chemistry. Q. Rev. Chem. Soc. 1961, 15, 372–391.

[47]

Brown, D.; Colton, R. 141. The magnetic properties of rhenium halides. Part I. Rhenium tetra-, penta-, and hexa-chloride. J. Chem. Soc. 1964, 8, 714–717

[48]

Knox, K.; Coffey, C. E. Chemistry of rhenium and technetium. II. Magnetic susceptibilities of ReCl5, ReCl3, TcCl4 and MoCl5. J. Am. Chem. Soc. 1959, 81, 5–7.

Nano Research
Pages 6575-6581
Cite this article:
Koch J, Cirillo C, Battisti S, et al. Gate-controlled supercurrent effect in dry-etched Dayem bridges of non-centrosymmetric niobium rhenium. Nano Research, 2024, 17(7): 6575-6581. https://doi.org/10.1007/s12274-024-6576-7
Topics:

387

Views

25

Downloads

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 16 December 2023
Revised: 08 February 2024
Accepted: 19 February 2024
Published: 22 April 2024
© The Author(s) 2024

Copyright: © 2024 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return