AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Insights into the role of oxygen-containing functional groups on carbon surface in water–electricity generation

Wan Xue1Zongbin Zhao1 ( )Honghui Bi1Bolun Zhang1Xuzhen Wang2Jieshan Qiu3( )
State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

Inspired by ant nests, porous composite films are fabricated by compositing MXene, graphene, and methylcellulose, which exhibit excellent electrochemical performance. High-performance supercapacitors and multi-responsive actuators based on the composite films are constructed for integrated devices, realizing the intelligence and miniaturization of soft robots.

Abstract

A deep understanding of the electricity generation mechanism from the interaction between water molecules and carbon material surfaces is attractive for next-generation water-based energy conversion and storage systems. Herein, an asymmetric generator was assembled based on functionalized carbon nanotubes films to investigate the relative contribution from various oxygen functional groups on carbon surface to the water-electrical performance. Experiments and calculations demonstrate that the electricity mainly originates from the water molecule adsorption by carboxyl groups and dissociation of functional groups on carbon surface, which leads to the formation of electrical double layers at interfaces. This device allows the electricity generation with a variety of water sources, such as deionized water, tap water, as well as seawater. In particular, the generator based on carboxyl carbon nanotubes can induce a voltage of over 200 mV spontaneously in natural seawater with the power density of about 0.11 mW·g−1. High voltages can be achieved easily through the series-connection strategy to power electronic products such as a liquid crystal display. This work reveals the dominant role of carboxyl groups in carbon-based water–electricity conversion and is expected to offer inspiration for the preparation of carbon materials with high electrical performance.

Electronic Supplementary Material

Download File(s)
6578_ESM.pdf (891.8 KB)

References

[1]
IEA. SDG7: Data and projections [Online]. IEA, Paris, France, 2019. https://www.iea.org/reports/sdg7-data-and-projections (accessed Apr 19, 2024).
[2]

Stephens, G. L.; Li, J. L.; Wild, M.; Clayson, C. A.; Loeb, N.; Kato, S.; L’Ecuyer, T.; Stackhouse, P. W. Jr.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696.

[3]

Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

[4]
Xu, T.; Ding, X. T.; Cheng, H. H.; Han, G. Y.; Qu, L. T. Moisture-enabled electricity from hygroscopic materials: A new type of clean energy. Adv. Mater., in press, https://doi.org/10.1002/adma.202209661.
[5]

Shao, B. B.; Song, Y. H.; Song, Z. H.; Wang, Y. N.; Wang, Y. S.; Liu, R. Y.; Sun, B. Q. Electricity generation from phase transitions between liquid and gaseous water. Adv. Energy Mater. 2023, 13, 2204091.

[6]

Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

[7]

Lu, W. H.; Ong, W. L.; Ho, G. W. Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A 2023, 11, 12456–12481.

[8]

Lu, W. H.; Ding, T. P.; Wang, X. Q.; Zhang, C.; Li, T. T.; Zeng, K. Y.; Ho, G. W. Anion–cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy 2022, 104, 107892.

[9]

Wei, Q. M.; Ge, W. N.; Yuan, Z. C.; Wang, S. X.; Lu, C. G.; Feng, S. L.; Zhao, L.; Liu, Y. H. Moisture electricity generation: Mechanisms, structures, and applications. Nano Res. 2023, 16, 7496–7510.

[10]

Li, X. M.; Feng, G.; Chen, Y. D.; Li, J. D.; Yin, J.; Deng, W.; Guo, W. L. Hybrid hydrovoltaic electricity generation driven by water evaporation. Nano Res. Energy 2024, 3, e9120110.

[11]

Shang, T. X.; Xu, Y.; Li, P.; Han, J. W.; Wu, Z. T.; Tao, Y.; Yang, Q. H. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 2020, 70, 104531.

[12]

Dong, Y.; Zhu, J. Y.; Li, Q. Q.; Zhang, S.; Song, H. H.; Jia, D. Z. Carbon materials for high mass-loading supercapacitors: Filling the gap between new materials and practical applications. J. Mater. Chem. A 2020, 8, 21930–21946.

[13]

Sun, J. C.; Li, P. D.; Qu, J. Y.; Lu, X.; Xie, Y. Q.; Gao, F.; Li, Y.; Gang, M. F.; Feng, Q. J.; Liang, H. W. et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 2019, 57, 269–278.

[14]

Wang, X.; Yuan, G.; Zhou, H.; Jiang, Y.; Wang, S.; Ma, J. J.; Yang, C. Y.; Hu, S. Composite laminar membranes for electricity generation from water evaporation. Nano Res. 2024, 17, 307–311.

[15]

Bai, J. X.; Liao, Q. H.; Yao, H. Z.; Guang, T. L.; He, T. C.; Cheng, H. H.; Qu, L. T. Self-induced interface enhanced moisture-harvesting and light-trapping toward high performance electric power generation. Energy Environ. Sci. 2023, 16, 3088–3097.

[16]

Yin, J.; Zhang, Z. H.; Li, X. M.; Yu, J.; Zhou, J. X.; Chen, Y. Q.; Guo, W. L. Waving potential in graphene. Nat. Commun. 2014, 5, 3582.

[17]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[18]

Shao, C. X.; Ji, B. X.; Xu, T.; Gao, J.; Gao, X.; Xiao, Y. K.; Zhao, Y.; Chen, N.; Jiang, L.; Qu, L. T. Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Appl. Mater. Interfaces 2019, 11, 30927–30935.

[19]

Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

[20]

Zhou, X. B.; Zhang, W. L.; Zhang, C. L.; Tan, Y.; Guo, J. C.; Sun, Z. N.; Deng, X. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl. Mater. Interfaces 2020, 12, 11232–11239.

[21]

Gabris, M. A.; Ping, J. F. Carbon nanomaterial-based nanogenerators for harvesting energy from environment. Nano Energy 2021, 90, 106494.

[22]

Yang, X. L.; Chen, Y. M.; Zhang, C. M.; Duan, G. G.; Jiang, S. H. Electrospun carbon nanofibers and their reinforced composites: Preparation, modification, applications, and perspectives. Compos. Part B: Eng. 2023, 249, 110386.

[23]

Li, J.; Liu, K.; Ding, T. P.; Yang, P. H.; Duan, J. J.; Zhou, J. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 2019, 58, 797–802.

[24]

Huang, Y. X.; Cheng, H. H.; Yang, C.; Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Shi, G. Q.; Qu, L. T. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

[25]

Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551.

[26]

Yang, C.; Wang, H. Y.; Yang, J. W.; Yao, H. Z.; He, T. C.; Bai, J. X.; Guang, T. L.; Cheng, H. H.; Yan, J. F.; Qu, L. T. A machine-learning-enhanced simultaneous and multimodal sensor based on moist-electric powered graphene oxide. Adv. Mater. 2022, 34, 2205249.

[27]

Xu, Y.; Tian, B. K.; Fang, S. M.; Guo, W. L.; Zhang, Z. H. Probing the interaction of water molecules with oxidized graphene by first principles. J. Phys. Chem. C 2021, 125, 4580–4587.

[28]

Zhao, H. Q.; Tang, Z. Y.; He, M. Q.; Yang, X.; Lai, S. W.; An, K. B.; Han, S. S.; Qu, Z. B.; Zhou, W.; Wang, Z. H. Effect of oxygen functional groups on competitive adsorption of benzene and water on carbon materials: Density functional theory study. Sci. Total Environ. 2023, 863, 160772.

[29]

Li, J.; Zhao, J. Y.; Zhang, M.; Cui, Y. M.; Kou, D. Bonding mechanism on TGDDM/CF and the influences of functional groups and interfacial water: An MD and DFT investigation. Appl. Surf. Sci. 2021, 538, 148049.

[30]

Xiao, J.; Xiao, N.; Li, K.; Zhang, L. P.; Ma, X. Q.; Li, Y.; Leng, C. Y.; Qiu, J. S. Sodium metal anodes with self-correction function based on fluorine-superdoped CNTs/cellulose nanofibrils composite paper. Adv. Funct. Mater. 2022, 32, 2111133.

[31]

Zhao, F.; Song, F. X.; Chen, Q. L. Nitrogen/sulfur codoped FCC-slurry-based porous carbon materials in symmetric supercapacitors. Appl. Surf. Sci. 2021, 561, 150063.

[32]

Chang, J. W.; Yu, C.; Song, X. D.; Tan, X. Y.; Ding, Y. W.; Zhao, Z. B.; Qiu, J. S. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem., Int. Ed. 2021, 60, 3587–3595.

[33]

Lu, Y.; Cai, Y. C.; Zhang, Q.; Ni, Y. X.; Zhang, K.; Chen, J. Rechargeable K-CO2 batteries with a KSn anode and a carboxyl-containing carbon nanotube cathode catalyst. Angew. Chem., Int. Ed. 2021, 60, 9540–9545.

[34]

Bhardwaj, N. K.; Dang, V. Q.; Nguyen, K. L. Determination of carboxyl content in high-yield Kraft pulps using photoacoustic rapid-scan Fourier transform infrared spectroscopy. Anal. Chem. 2006, 78, 6818–6825.

[35]

Zhao, Y.; Ye, J. Q.; Zhang, P.; Li, Z.; Zhao, H. Q. Abnormal preferential oxygen functionalization on the surface of soft/hard carbon for sodium storage. Appl. Surf. Sci. 2022, 602, 154336.

[36]

Zhang, L. Y.; Wang, Z. Y.; Qiu, J. S. Energy-saving hydrogen production by seawater electrolysis coupling sulfion degradation. Adv. Mater. 2022, 34, 2109321.

[37]

Feng, J. X.; Xu, H.; Ye, S. H.; Ouyang, G. F.; Tong, Y. X.; Li, G. R. Silica-polypyrrole hybrids as high-performance metal-free electrocatalysts for the hydrogen evolution reaction in neutral media. Angew. Chem., Int. Ed. 2017, 56, 8120–8124.

[38]

Wang, C. Y.; Xing, Y. W.; Lei, Y. Z.; Xia, Y. C.; Zhang, C. H.; Zhang, R.; Wang, S. W.; Chen, P.; Zhu, S.; Li, J. H. et al. Adsorption of water on carbon materials: The formation of “water bridge” and its effect on water adsorption. Colloid Surf. A 2021, 631, 127719.

[39]

Tan, X. Y.; Yu, C.; Song, X. D.; Ni, L.; Xu, H. Y.; Xie, Y. Y.; Wang, Z.; Cui, S.; Ren, Y. W.; Li, W. B. et al. Robust O-Pd-Cl catalyst–electrolyte interfaces enhance CO tolerance of Pd/C catalyst for stable CO2 electroreduction. Nano Energy 2022, 104, 107957.

[40]

Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, 1704473.

[41]

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

[42]

Shao, B. B.; Wu, Y. F.; Song, Z. H.; Yang, H. W.; Chen, X.; Zou, Y. T.; Zang, J. Q.; Yang, F.; Song, T.; Wang, Y. S. et al. Freestanding silicon nanowires mesh for efficient electricity generation from evaporation-induced water capillary flow. Nano Energy 2022, 94, 106917.

[43]

Zhang, J.; Zhan, K.; Zhang, S. S.; Shen, Y. G.; Hou, Y. Q.; Liu, J.; Fan, Y.; Zhang, Y. M.; Wang, S. L.; Xie, Y. B. et al. Discontinuous streaming potential via liquid gate. eScience 2022, 2, 615–622.

[44]

Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916.

[45]

Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

[46]

Wang, H. Y.; He, T. C.; Hao, X. Z.; Huang, Y. X.; Yao, H. Z.; Liu, F.; Cheng, H. H.; Qu, L. T. Moisture adsorption–desorption full cycle power generation. Nat. Commun. 2022, 13, 2524.

[47]

Liu, L. M.; Tan, S. L.; Horikawa, T.; Do, D. D.; Nicholson, D.; Liu, J. J. Water adsorption on carbon—A review. Adv. Colloid Interface Sci. 2017, 250, 64–78.

[48]

Moghadam, R. A.; Sajadi, S. M.; Abu-Hamdeh, N. H.; Bezzina, S.; Kalbasi, R.; Karimipour, A.; Ghaemi, F.; Baleanu, D. Water molecules adsorption by a porous carbon matrix in the presence of NaCl impurities using molecular dynamic simulation. J. Mol. Liq. 2022, 347, 117998.

[49]

Fang, S. M.; Li, J. D.; Xu, Y.; Shen, C.; Guo, W. L. Evaporating potential. Joule 2022, 6, 690–701.

[50]

Liu, A. T.; Kunai, Y.; Cottrill, A. L.; Kaplan, A.; Zhang, G.; Kim, H.; Mollah, R. S.; Eatmon, Y. L.; Strano, M. S. Solvent-induced electrochemistry at an electrically asymmetric carbon Janus particle. Nat. Commun. 2021, 12, 3415.

[51]

Liu, K.; Yang, P. H.; Li, S.; Li, J.; Ding, T. P.; Xue, G. B.; Chen, Q.; Feng, G.; Zhou, J. Induced potential in porous carbon films through water vapor absorption. Angew. Chem., Int. Ed. 2016, 55, 8003–8007.

[52]

Li, L. H.; Hao, M. M.; Yang, X. Q.; Sun, F. Q.; Bai, Y. Y.; Ding, H. Y.; Wang, S. Q.; Zhang, T. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy 2020, 72, 104663.

[53]

Yang, C.; Wang, H. Y.; Bai, J. X.; He, T. C.; Cheng, H. H.; Guang, T. L.; Yao, H. Z.; Qu, L. T. Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat. Commun. 2022, 13, 6819.

[54]

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

[55]

Xu, T.; Ding, X. T.; Huang, Y. X.; Shao, C. X.; Song, L.; Gao, X.; Zhang, Z. P.; Qu, L. T. An efficient polymer moist-electric generator. Energy Environ. Sci. 2019, 12, 972–978.

Nano Research
Pages 6645-6653
Cite this article:
Xue W, Zhao Z, Bi H, et al. Insights into the role of oxygen-containing functional groups on carbon surface in water–electricity generation. Nano Research, 2024, 17(7): 6645-6653. https://doi.org/10.1007/s12274-024-6578-5
Topics:

538

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 28 December 2023
Revised: 06 February 2024
Accepted: 19 February 2024
Published: 30 April 2024
© Tsinghua University Press 2024
Return