Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Enriching the library of chiral plasmonic structures is of significant importance in advancing their applicability across diverse domains such as biosensing, nanophotonics, and catalysis. Here, employing triangle nanoplates as growth seeds, we synthesized a novel class of chiral-shaped plasmonic nanostructures through a wet chemical strategy with dipeptide as chiral inducers, including chiral tri-blade boomerangs, concave rhombic dodecahedrons, and nanoflowers. The structural diversity in chiral plasmonic nanostructures was elucidated through their continuous morphological evolution from two-dimensional to three-dimensional architectures. The fine-tuning of chiroptical properties was achieved by precisely manipulating crucial synthetic parameters such as the amount of chiral molecules, seeds, and gold precursor that significantly influenced chiral structure formation. The findings provide a promising avenue for enriching chiral materials with highly sophisticated structures, facilitating a fundamental understanding of the relationship between structural nuances and chiroptical properties.
Lv, J. W.; Gao, X. Q.; Han, B.; Zhu, Y. F.; Hou, K.; Tang, Z. Y. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145.
Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331–1343.
Zhao, X. L.; Zang, S. Q.; Chen, X. Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481–2503.
Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930–2962.
Esmaeili, M.; Akbari, E.; George, K.; Rezvan, G.; Taheri-Qazvini, N.; Sadati, M. Engineering nano/microscale chiral self-assembly in 3D printed constructs. Nano-Micro Lett. 2024, 16, 54.
Kitzmann, W. R.; Freudenthal, J.; Reponen, A. P. M.; VanOrman, Z. A.; Feldmann, S. Fundamentals, advances, and artifacts in circularly polarized luminescence (CPL) spectroscopy. Adv. Mater. 2023, 35, 2302279.
Gao, C.; Gu, Y. Y.; Zhao, Y.; Qu, L. T. Recent development of integrated systems of microsupercapacitors. Energy Mater. Adv. 2022, 2022, 9804891.
Ha, M. J.; Kim, J. H.; You, M.; Li, Q.; Fan, C. H.; Nam, J. M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019, 119, 12208–12278.
Zhang, D.; Ding, C. P.; Zheng, X. Y.; Ye, J. Z.; Chen, Z. H.; Li, J. H.; Yan, Z. J.; Jiang, J. H.; Huang, Y. J. Ultrasensitive and accurate diagnosis of urothelial cancer by plasmonic AuNRs-enhanced fluorescence of near-infrared Ag2S quantum dots. Rare Met. 2022, 41, 3828–3838.
Lermusiaux, L.; Nisar, A.; Funston, A. M. Flexible synthesis of high-purity plasmonic assemblies. Nano Res. 2021, 14, 635–645.
Cao, Z. L.; Gao, H.; Qiu, M.; Jin, W.; Deng, S. Z.; Wong, K. Y.; Lei, D. Y. Chirality transfer from sub-nanometer biochemical molecules to sub-micrometer plasmonic metastructures: Physiochemical mechanisms, biosensing, and bioimaging opportunities. Adv. Mater. 2020, 32, 1907151.
Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.
Pan, J. H.; Wang, X. Y.; Zhang, J. J.; Zhang, Q.; Wang, Q. B.; Zhou, C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles. Nano Res. 2022, 15, 9447–9453.
Zhu, D. Z.; Yan, J. F.; Liang, Z. W.; Xie, J. W.; Bai, H. L. Laser stripping of Ag shell from Au@Ag nanoparticles. Rare Met. 2021, 40, 3454–3459.
Zhao, Y.; Xu, C. L. DNA-based plasmonic heterogeneous nanostructures: Building, optical responses, and bioapplications. Adv. Mater. 2020, 32, 1907880.
Kong, X. T.; Besteiro, L. V.; Wang, Z. M.; Govorov, A. O. Plasmonic chirality and circular dichroism in bioassembled and nonbiological systems: Theoretical background and recent progress. Adv. Mater. 2018, 32, 1801790.
Gao, Q.; Tan, L. L.; Wen, Z. H.; Fan, D. D.; Hui, J. F.; Wang, P. P. Chiral inorganic nanomaterials: Harnessing chirality-dependent interactions with living entities for biomedical applications. Nano Res. 2023, 16, 11107–11124.
Hao, C. L.; Wang, G. Y.; Chen, C.; Xu, J.; Xu, C. L.; Kuang, H.; Xu, L. G. Circularly polarized light-enabled chiral nanomaterials: From fabrication to application. Nano-Micro Lett. 2023, 15, 39.
Guo, Z. L.; Yu, G.; Zhang, Z. G.; Han, Y. D.; Guan, G. J.; Yang, W. S.; Han, M. Y. Intrinsic optical properties and emerging applications of gold nanostructures. Adv. Mater. 2023, 35, 2206700.
Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.
Abbas, S. U.; Li, J. J.; Liu, X.; Siddique, A.; Shi, Y. X.; Hou, M.; Yang, K.; Nosheen, F.; Cui, X. Y.; Zheng, G. C. et al. Chiral metal nanostructures: Synthesis, properties and applications. Rare Met. 2023, 42, 2489–2515.
Zhou, S.; Li, J. H.; Lu, J.; Liu, H. H.; Kim, J. Y.; Kim, A.; Yao, L. H.; Liu, C.; Qian, C.; Hood, Z. D. et al. Chiral assemblies of pinwheel superlattices on substrates. Nature 2022, 612, 259–265.
Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.
Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.
Zheng, J. P.; Boukouvala, C.; Lewis, G. R.; Ma, Y. C.; Chen, Y.; Ringe, E.; Shao, L.; Huang, Z. F.; Wang, J. F. Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry. Nat. Commun. 2023, 14, 3783.
Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering. ACS Nano 2014, 8, 5833–5842.
Ni, B.; Zhou, J.; Stolz, L.; Cölfen, H. A facile and rational method to tailor the symmetry of Au@Ag nanoparticles. Adv. Mater. 2023, 35, 2209810.
Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.
Choi, B. K.; Kim, J.; Luo, Z.; Kim, J.; Kim, J. H.; Hyeon, T.; Mehraeen, S.; Park, S.; Park, J. Shape transformation mechanism of gold nanoplates. ACS Nano 2023, 17, 2007–2018.
Wang, H. D.; Liu, Y.; Yu, J. M.; Luo, Y. G.; Wang, L. L.; Yang, T.; Raktani, B.; Lee, H. Selectively regulating the chiral morphology of amino acid-assisted chiral gold nanoparticles with circularly polarized light. ACS Appl. Mater. Interfaces 2022, 14, 3559–3567.
Hong, J. W.; Lee, S. U.; Lee, Y. W.; Han, S. W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced raman scattering properties. J. Am. Chem. Soc. 2012, 134, 4565–4568.
Lee, H. E.; Yang, K. D.; Yoon, S. M.; Ahn, H. Y.; Lee, Y. Y.; Chang, H.; Jeong, D. H.; Lee, Y. S.; Kim, M. Y.; Nam, K. T. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 2015, 9, 8384–8393.
Lin, H. X.; Lei, Z. C.; Jiang, Z. Y.; Hou, C. P.; Liu, D. Y.; Xu, M. M.; Tian, Z. Q.; Xie, Z. X. Supersaturation-dependent surface structure evolution: From ionic, molecular to metallic micro/nanocrystals. J. Am. Chem. Soc. 2013, 135, 9311–9314.
Nguyen, Q. N.; Wang, C. X.; Shang, Y. X.; Janssen, A.; Xia, Y. N. Colloidal synthesis of metal nanocrystals: From asymmetrical growth to symmetry breaking. Chem. Rev. 2023, 123, 3693–3760.
Yang, F.; Feng, J.; Chen, J. X.; Ye, Z. Y.; Chen, J. H.; Hensley, D. K.; Yin, Y. D. Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures. Nano Res. 2023, 16, 5873–5879.
Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.
Ni, B.; Mychinko, M.; Gómez-Graña, S.; Morales-Vidal, J.; Obelleiro-Liz, M.; Heyvaert, W.; Vila-Liarte, D.; Zhuo, X. L.; Albrecht, W.; Zheng, G. C. et al. Chiral seeded growth of gold nanorods into fourfold twisted nanoparticles with plasmonic optical activity. Adv. Mater. 2023, 35, 2208299.
Zheng, Y. L.; Wang, Q.; Sun, Y. W.; Huang, J.; Ji, J.; Wang, Z. J.; Wang, Y. W.; Chen, H. Y. Chiral active surface growth via glutathione control. Adv. Opt. Mater. 2023, 11, 2202858.
Huang, J. F.; Zhu, Y. H.; Liu, C. X.; Shi, Z.; Fratalocchi, A.; Han, Y. Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers. Nano Lett. 2016, 16, 617–623.
Yan, J.; Chen, Y. D.; Hou, S.; Chen, J. Q.; Meng, D. J.; Zhang, H.; Fan, H. Z.; Ji, Y. L.; Wu, X. C. Fabricating chiroptical starfruit-like Au nanoparticles via interface modulation of chiral thiols. Nanoscale 2017, 9, 11093–11102.
Ben-Moshe, A.; Wolf, S. G.; Bar Sadan, M.; Houben, L.; Fan, Z. Y.; Govorov, A. O.; Markovich, G. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 2014, 5, 4302.
Wu, F. X.; Li, F. H.; Tian, Y.; Lv, X. L.; Luan, X. X.; Xu, G. B.; Niu, W. X. Surface topographical engineering of chiral Au nanocrystals with chiral hot spots for plasmon-enhanced chiral discrimination. Nano Lett. 2023, 23, 8233–8240.
Su, A.; Wang, Q.; Huang, L. P.; Zheng, Y. L.; Wang, Y. W.; Chen, H. Y. Gold nanohexagrams via active surface growth under sole CTAB control. Nanoscale 2023, 15, 14858–14865.
Personick, M. L.; Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 18238–18247.
Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.
Meena, S. K.; Celiksoy, S.; Schäfer, P.; Henkel, A.; Sönnichsen, C.; Sulpizi, M. The role of halide ions in the anisotropic growth of gold nanoparticles: A microscopic, atomistic perspective. Phys. Chem. Chem. Phys. 2016, 18, 13246–13254.
Yang, S. H.; Zheng, Y. L.; He, G. Y.; Zhang, M. M.; Li, H. Y.; Wang, Y. W.; Chen, H. Y. From flat to deep concave: An unusual mode of facet control. Chem. Commun. 2022, 58, 6128–6131.
Zheng, Y. L.; Zong, J. P.; Xiang, T.; Ren, Q.; Su, D. M.; Feng, Y. H.; Wang, Y. W.; Chen, H. Y. Turning weak into strong: On the CTAB-induced active surface growth. Sci. China Chem. 2022, 65, 1299–1305.