Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Carbon nanotube field-effect transistors (CNTFETs) are increasingly recognized as a viable option for creating high-performance, low-power, and densely integrated circuits (ICs). Advancements in carbon-based electronics, encompassing materials and device technology, have enabled the fabrication of circuits with over 1000 gates, marking carbon-based integrated circuit design as a burgeoning field of research. A critical challenge in the realm of carbon-based very-large-scale integration (VLSI) is the lack of suitable automated design methodologies and infrastructure platforms. In this study, we present the development of a wafer-scale 3 µm carbon-based complementary metal-oxide-semiconductor (CMOS) process design kit (PDK) (3 µm-CNTFETs-PDK) compatible with silicon-based Electronic Design Automation (EDA) tools and VLSI circuit design flow. The proposed 3 µm-CNTFETs-PDK features a contacted gate pitch (CGP) of 21 µm, a gate density of 128 gates/mm², and a transistor density of 554 transistors/mm², with an intrinsic gate delay around 134 ns. Validation of the 3 µm-CNTFETs-PDK was achieved through the successful design and tape-out of 153 standard cells and 333-stage ring oscillator circuits. Leveraging the carbon-based PDK and a silicon-based design platform, we successfully implemented a complete 64-bit static random-access memory (SRAM) circuit system for the first time, which exhibited timing, power, and area characteristics of clock@10 kHz, 122.1 µW, 3795 µm × 2810 µm. This research confirms that carbon-based IC design can be compatible with existing EDA tools and silicon-based VLSI design flow, thereby laying the groundwork for future carbon-based VLSI advancements.
Khan, H. N.; Hounshell, D. A.; Fuchs, E. R. H. Science and research policy at the end of Moore’s law. Nat. Electron. 2018, 1, 14–21.
Hills, G.; Bardon, M. G.; Doornbos, G.; Yakimets, D.; Schuddinck, P.; Baert, R.; Jang, D.; Mattii, L.; Sherazi, S. M. Y.; Rodopoulos, D. et al. Understanding energy efficiency benefits of carbon nanotube field-effect transistors for digital VLSI. IEEE Trans. NanoTechnol. 2018, 17, 1259–1269.
Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.
Purewal, M. S.; Hong, B. H.; Ravi, A.; Chandra, B.; Hone, J.; Kim, P. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 98, 186808.
Ilani, S.; Donev, L. A. K.; Kindermann, M.; McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2006, 2, 687–691.
Pomorski, P.; Pastewka, L.; Roland, C.; Guo, H.; Wang, J. Capacitance, induced charges, and bound states of biased carbon nanotube systems. Phys. Rev. B 2004, 69, 115418.
Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.
Aly, M. M. S.; Wu, T. F.; Bartolo, A.; Malviya, Y. H.; Hwang, W.; Hills, G.; Markov, I.; Wootters, M.; Shulaker, M. M.; Wong, H. S. P. et al. The N3XT approach to energy-efficient abundant-data computing. Proc. IEEE 2019, 107, 19–48.
Shulaker, M. M.; van Rethy, J.; Hills, G.; Wei, H.; Chen, H. Y.; Gielen, G.; Wong, H. S. P.; Mitra, S. Sensor-to-digital interface built entirely with carbon nanotube FETs. IEEE J. Solid-State Circ. 2014, 49, 190–201.
Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 2012, 3, 677.
Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.
Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.
Bishop, M. D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M. M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501.
Wei, N.; Gao, N. F.; Xu, H. T.; Liu, Z.; Gao, L.; Jiang, H. X.; Tian, Y.; Chen, Y. F.; Du, X. D.; Peng, L. M. Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Res. 2022, 15, 9875–9880.
Lee, C. S.; Pop, E.; Franklin, A. D.; Haensch, W.; Wong, H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part I: Intrinsic elements. IEEE Tran. Electron Dev. 2015, 62, 3061–3069.
Lee, C. S.; Pop, E.; Franklin, A. D.; Haensch, W.; Wong, H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part II: Extrinsic elements, performance assessment, and design optimization. IEEE Tran. Electron Dev. 2015, 62, 3070–3078.
Lundstrom, M. S.; Antoniadis, D. A. Compact models and the physics of nanoscale FETs. IEEE Tran. Electron Dev. 2014, 61, 225–233.
Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.
Kanhaiya, P. S.; Lau, C.; Hills, G.; Bishop, M. D.; Shulaker, M. M. Carbon nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells. IEEE Tran. Electron Dev. 2019, 99, 5375–5380.
Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948.
Zhu, M. G.; Zhang, Z. Y.; Peng, L. M. High-performance and radiation-hard carbon nanotube complementary static random-access memory. Adv. Electron. Mater. 2019, 5, 1900313.
Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.