AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Wafer-scale carbon-based CMOS PDK compatible with silicon-based VLSI design flow

Minghui Yin1,2,3Haitao Xu4,5( )Yunxia You1,3Ningfei Gao4Weihua Zhang1,2,3Hongwei Liu1,2,3Huanhuan Zhou1,3Chen Wang1,3Lian-Mao Peng6Zhiqiang Li1,2,3( )
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Lab of Fabrication Technologies for Integrated Circuits, Beijing 100029, China
Beijing Hua Tan Yuan Xin Electronics Technology Co., Ltd., Beijing 101399, China
Institute of Carbon-based Thin Film Electronics, Peking University, Shanxi 030012, China
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

A set of wafer-scale carbon-based metal-oxide-semiconductor (CMOS) process design kit (PDK) compatible with silicon-based very-large-scale integration (VLSI) design flow is designed and validated. Evaluation of the performance–power–area (PPA) electrical characteristics and design of static random-access memory (SRAM) circuit system based on carbon-based process are completed.

Abstract

Carbon nanotube field-effect transistors (CNTFETs) are increasingly recognized as a viable option for creating high-performance, low-power, and densely integrated circuits (ICs). Advancements in carbon-based electronics, encompassing materials and device technology, have enabled the fabrication of circuits with over 1000 gates, marking carbon-based integrated circuit design as a burgeoning field of research. A critical challenge in the realm of carbon-based very-large-scale integration (VLSI) is the lack of suitable automated design methodologies and infrastructure platforms. In this study, we present the development of a wafer-scale 3 µm carbon-based complementary metal-oxide-semiconductor (CMOS) process design kit (PDK) (3 µm-CNTFETs-PDK) compatible with silicon-based Electronic Design Automation (EDA) tools and VLSI circuit design flow. The proposed 3 µm-CNTFETs-PDK features a contacted gate pitch (CGP) of 21 µm, a gate density of 128 gates/mm², and a transistor density of 554 transistors/mm², with an intrinsic gate delay around 134 ns. Validation of the 3 µm-CNTFETs-PDK was achieved through the successful design and tape-out of 153 standard cells and 333-stage ring oscillator circuits. Leveraging the carbon-based PDK and a silicon-based design platform, we successfully implemented a complete 64-bit static random-access memory (SRAM) circuit system for the first time, which exhibited timing, power, and area characteristics of clock@10 kHz, 122.1 µW, 3795 µm × 2810 µm. This research confirms that carbon-based IC design can be compatible with existing EDA tools and silicon-based VLSI design flow, thereby laying the groundwork for future carbon-based VLSI advancements.

Electronic Supplementary Material

Download File(s)
6583_ESM.pdf (958.2 KB)

References

[1]

Khan, H. N.; Hounshell, D. A.; Fuchs, E. R. H. Science and research policy at the end of Moore’s law. Nat. Electron. 2018, 1, 14–21.

[2]

Hills, G.; Bardon, M. G.; Doornbos, G.; Yakimets, D.; Schuddinck, P.; Baert, R.; Jang, D.; Mattii, L.; Sherazi, S. M. Y.; Rodopoulos, D. et al. Understanding energy efficiency benefits of carbon nanotube field-effect transistors for digital VLSI. IEEE Trans. NanoTechnol. 2018, 17, 1259–1269.

[3]

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

[4]

Purewal, M. S.; Hong, B. H.; Ravi, A.; Chandra, B.; Hone, J.; Kim, P. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 98, 186808.

[5]

Ilani, S.; Donev, L. A. K.; Kindermann, M.; McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2006, 2, 687–691.

[6]

Pomorski, P.; Pastewka, L.; Roland, C.; Guo, H.; Wang, J. Capacitance, induced charges, and bound states of biased carbon nanotube systems. Phys. Rev. B 2004, 69, 115418.

[7]

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

[8]
Patil, N.; Lin, A.; Zhang, J.; Wei, H.; Anderson, K.; Wong, H. S. P.; Mitra, S. VMR: VLSI-compatible metallic carbon nanotube removal for imperfection-immune cascaded multi-stage digital logic circuits using carbon nanotube FETs. In Proceedings of 2009 IEEE International Electron Devices Meeting, Baltimore, USA, 2009, pp 1–4.
[9]

Aly, M. M. S.; Wu, T. F.; Bartolo, A.; Malviya, Y. H.; Hwang, W.; Hills, G.; Markov, I.; Wootters, M.; Shulaker, M. M.; Wong, H. S. P. et al. The N3XT approach to energy-efficient abundant-data computing. Proc. IEEE 2019, 107, 19–48.

[10]
Shulaker, M. M.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS. In Proceedings of 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, USA, 2014, pp 1–2.
[11]

Shulaker, M. M.; van Rethy, J.; Hills, G.; Wei, H.; Chen, H. Y.; Gielen, G.; Wong, H. S. P.; Mitra, S. Sensor-to-digital interface built entirely with carbon nanotube FETs. IEEE J. Solid-State Circ. 2014, 49, 190–201.

[12]

Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 2012, 3, 677.

[13]

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

[14]

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

[15]

Bishop, M. D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M. M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501.

[16]
Shi, C. L.; Miwa, S.; Yang, T. X.; Shioya, R.; Yamaki, H.; Honda, H. CNFET7: An open source cell library for 7-nm CNFET technology. In Proceedings of the 2023 28th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 2023, pp 763–768.
[17]

Wei, N.; Gao, N. F.; Xu, H. T.; Liu, Z.; Gao, L.; Jiang, H. X.; Tian, Y.; Chen, Y. F.; Du, X. D.; Peng, L. M. Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Res. 2022, 15, 9875–9880.

[18]

Lee, C. S.; Pop, E.; Franklin, A. D.; Haensch, W.; Wong, H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part I: Intrinsic elements. IEEE Tran. Electron Dev. 2015, 62, 3061–3069.

[19]

Lee, C. S.; Pop, E.; Franklin, A. D.; Haensch, W.; Wong, H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part II: Extrinsic elements, performance assessment, and design optimization. IEEE Tran. Electron Dev. 2015, 62, 3070–3078.

[20]

Lundstrom, M. S.; Antoniadis, D. A. Compact models and the physics of nanoscale FETs. IEEE Tran. Electron Dev. 2014, 61, 225–233.

[21]

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

[22]
International Roadmap for Devices and Systems: IEEE IRDS™ (2022 Edition) [Online]. 2022; pp 20–21. https://irds.ieee.org/editions/2022/more-moore (accessed Jan 4, 2024).
[23]

Kanhaiya, P. S.; Lau, C.; Hills, G.; Bishop, M. D.; Shulaker, M. M. Carbon nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells. IEEE Tran. Electron Dev. 2019, 99, 5375–5380.

[24]

Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948.

[25]

Zhu, M. G.; Zhang, Z. Y.; Peng, L. M. High-performance and radiation-hard carbon nanotube complementary static random-access memory. Adv. Electron. Mater. 2019, 5, 1900313.

[26]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

Nano Research
Pages 7557-7566
Cite this article:
Yin M, Xu H, You Y, et al. Wafer-scale carbon-based CMOS PDK compatible with silicon-based VLSI design flow. Nano Research, 2024, 17(8): 7557-7566. https://doi.org/10.1007/s12274-024-6583-8
Topics:

676

Views

0

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 04 January 2024
Revised: 07 February 2024
Accepted: 22 February 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return