AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An arch-shape wood evaporator decorated by metal-organic framework for solar interface evaporation

Tiantian Wu1,§Liming Zhao2,§Yaning Xu1Ziwei Cui1Lixing Kang2Yahui Cai1Zupeng Chen1Dan Tian1,( )
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Present address: College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

§ Tiantian Wu and Liming Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

An all-in-one arch-shape wood evaporator is fabricated for solar interface evaporation via in-situ growth of metal-organic framework on wood channels. The double-sided evaporation performance and recyclable reusability of the evaporator open a new way for seawater purification by efficient photothermal conversion.

Abstract

To achieve sustainable desalination and water purification, solar interface evaporation technology is an effective means due to its high energy efficiency. Reasonable photothermal conversion materials and surface design are crucial for the interfacial solar evaporation process. How to design water transport routes and thermal insulating layers simultaneously is one of the major challenges to solar interface evaporation technology today. Herein, this work reports an arch-shaped wood evaporator (pine@carbon black (CB)-metal-organic framework-801 (MOF-801)-36%) for efficient, fast and continuous interfacial solar evaporation, which is composed of an arch-shaped wood substrate, MOF-801, and CB as a light absorption layer. The arch-shaped structure has a double-sided evaporation effect, which has a synergistic effect on augmenting solar evaporation efficiency. In addition, the in-situ growth of MOF-801 in pretreated wood microchannels renders the wood evaporator a significant function of reducing the equivalent enthalpy of evaporation due to the reduction of the hydrogen bonding density of water molecules as they pass through the wood channels. The best evaporation rate of the arch-shaped wood evaporator can reach 2.535 kg·m−2·h−1, and the efficiency reaches 93.7% under the irradiation of 1 sun illumination. Notably, it could be used for desalination and wastewater treatment to collect fresh water that meets drinking requirements set by the World Health Organization (WHO). This integrated evaporator provides an efficient way for commercial portable photothermal conversion and new ideas for advanced solar-driven water treatment technology.

Electronic Supplementary Material

Download File(s)
6585_ESM.pdf (6.5 MB)

References

[1]

Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707

[2]

Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072.

[3]

Vörösmarty, C. J.; Green, P.; Salisbury, J.; Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288.

[4]

Mekonnen, M. M.; Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323.

[5]

Macedonio, F.; Drioli, E.; Gusev, A. A.; Bardow, A.; Semiat, R.; Kurihara, M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. 2012, 51, 2–17.

[6]

Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936.

[7]

Li, Z. T.; Wang, C. B.; Su, J. B.; Ling, S.; Wang, W.; An, M. Fast-growing field of interfacial solar steam generation: Evolutional materials, engineered architectures, and synergistic applications. Solar RRL 2019, 3, 1800206.

[8]

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

[9]

Wu, X.; Wang, Y. D.; Wu, P.; Zhao, J. Y.; Lu, Y.; Yang, X. F.; Xu, H. L. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 31, 2102618.

[10]

Fang, Q. L.; Li, T. T.; Chen, Z. M.; Lin, H. B.; Wang, P.; Liu, F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces 2019, 11, 10672–10679.

[11]

Liao, Q. H.; Zhang, P. P.; Yao, H. Z.; Cheng, H. H.; Li, C.; Qu, L. T. Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci. 2020, 7, 1903125.

[12]

Wang, C. B.; Xu, K. Y.; Shi, G. L.; Wei, D. Water skin effect and arched double-sided evaporation for boosting all-weather high salinity desalination. Adv. Energy Mater. 2023, 13, 2300134.

[13]

Wang, Y. C.; Zhang, L. B.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 2016, 4, 1223–1230.

[14]

Li, S.; He, Y. Y.; Guan, Y. P.; Liu, X. Y.; Liu, H. X.; Xie, M. S.; Zhou, L.; Wei, C.; Yu, C. B.; Chen, Y. H. Cellulose nanofibril-stabilized pickering emulsion and in situ polymerization lead to hybrid aerogel for high-efficiency solar steam generation. ACS Appl. Polym. Mater. 2020, 2, 4581–4591.

[15]

Li, T.; Liu, H.; Zhao, X. P.; Chen, G.; Dai, J. Q.; Pastel, G.; Jia, C.; Chen, C. J.; Hitz, E.; Siddhartha, D. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134.

[16]

Awad, F. S.; Kiriarachchi, H. D.; AbouZeid, K. M.; Özgür, Ü.; El-Shall, M. S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Appl. Energy Mater. 2018, 1, 976–985.

[17]

Fan, D. Q.; Min, H. H.; Zhang, H.; Tang, Y. C.; Yang, X. F.; Lu, Y. Architecting a bifunctional solar evaporator of perovskite La0.5Sr0.5CoO3 for solar evaporation and degradation. J. Mater. Sci. 2021, 56, 18625–18635.

[18]

Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 2019, 56, 708–715.

[19]

Li, Z. T.; Zhang, J.; Zang, S. H.; Yang, C.; Liu, Y.; Jing, F.; Jing, H.; Hu, J. K.; Wang, C. B.; Zhou, Y. T. Engineering controllable water transport of biosafety cuttlefish juice solar absorber toward remarkably enhanced solar-driven gas–liquid interfacial evaporation. Nano Energy 2020, 73, 104834.

[20]

Wang, C. B.; Wang, J. L.; Li, Z. T.; Xu, K. Y.; Lei, T.; Wang, W. K. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A 2020, 8, 9528–9535.

[21]

Park, S. H.; Park, J. H.; Kim, J.; Lee, S. J. Simultaneous solar-driven seawater desalination and spontaneous power generation using polyvalent crosslinked polypyrrole/alginate hydrogels. Desalination 2021, 500, 114900.

[22]

Lu, Y.; Fan, D. Q.; Shen, Z. Y.; Zhang, H.; Xu, H. L.; Yang, X. F. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 2022, 95, 107016.

[23]

Wang, X. Z.; He, Y. R.; Liu, X.; Cheng, G.; Zhu, J. Q. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 2017, 195, 414–425.

[24]

Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

[25]

Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

[26]

Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

[27]

Qu, M. N.; Yan, J. F.; Ge, J. W.; Zhao, Y.; Xue, Y. Y.; Liu, X. F.; Liu, H.; Yan, M.; He, J. M. Nature-inspired wood-based solar evaporation system for efficient desalination and water purification. J. Mater. Sci. 2023, 58, 6220–6236.

[28]

Zhang, T.; Yan, W.; Wang, Y.; Wang, J.; Liu, C. Y.; Ye, F.; Liu, B. An ecofriendly and efficient wood-based polyoxovanadate solar evaporation generator. Sci. China Mater. 2023, 66, 3292–3299.

[29]

Jiang, D. X.; Dai, Y. H.; Jiang, Y. W.; Yu, W. Q.; Ma, D. Y.; Bai, L.; Huo, P. F.; Li, Z. G.; Liu, Y. Polydopamine/Fe3O4 modified wood-based evaporator for efficient and continuous water purification. J. Colloid Interface Sci. 2023, 652, 1271–1281.

[30]

Zhang, R.; Zhou, Y. W.; Xiang, B.; Zeng, X. J.; Luo, Y. L.; Meng, X. K.; Tang, S. C. Scalable carbon black enhanced nanofiber network films for high-efficiency solar steam generation. Adv. Mater. Interfaces 2021, 8, 2101160.

[31]

Li, H. D.; Aizudin, M.; Yang, S. Q.; Guo, Z. J.; Yang, J.; Yang, F.; Ang, E. H.; Pan, J. M. Optimizing coupling effect of confined FeNi nanoalloys within graphitic carbon nanofibers to improve photothermal energy conversion efficiency for solar water purification. Sep. Purif. Technol. 2023, 326, 124802.

[32]

Wang, M. M.; Wang, P.; Zhang, J.; Li, C. P.; Jin, Y. D. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. ChemSusChem 2019, 12, 467–472.

[33]

Hou, Q.; Zhou, H. Y.; Zhang, W.; Chang, Q.; Yang, J. L.; Xue, C. R.; Hu, S. L. Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood. Sci. Total Environ. 2021, 759, 144317.

[34]

Huang, W.; Hu, G. Y.; Tian, C.; Wang, X. H.; Tu, J. C.; Cao, Y.; Zhang, K. X. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation. Sustainable Energy Fuels 2019, 3, 3000–3008.

[35]

Wang, Y. G.; Yu, R. B. Investigation of the catalytic effect of defective Ni-MOF-74 on polymerization of dopamine and multi-pore polydopamine photothermal coating constructed with defective Ni-MOF-74 particles. J. Environ. Chem. Eng. 2023, 11, 110422.

[36]

Su, L. F.; Liu, X. Y.; Xia, W.; Wu, B.; Li, C. J.; Xu, B.; Yang, B.; Xia, R.; Zhou, J. H.; Qian, J. S. et al. Simultaneous photothermal and photocatalytic MOF- derived C/TiO2 composites for high-efficiency solar driven purification of sewage. J. Colloid Interface Sci. 2023, 650, 613–621.

[37]

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

[38]

Liu, H. W.; Jin, R. Z.; Duan, S. C.; Ju, Y. J.; Wang, Z. Y.; Yang, K.; Wang, B. D.; Wang, B.; Yao, Y. G.; Chen, F. J. Anisotropic evaporator with a T-shape design for high-performance solar-driven zero-liquid discharge. Small 2021, 17, 2100969.

[39]

Finnerty, C.; Zhang, L.; Sedlak, D. L.; Nelson, K. L.; Mi, B. X. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 2017, 51, 11701–11709.

[40]

Jin, Y.; Chang, J.; Shi, Y.; Shi, L.; Hong, S.; Wang, P. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation. J. Mater. Chem. A 2018, 6, 7942–7949.

[41]

Zhang, Y. X.; Ravi, S. K.; Tan, S. C. Systematic study of the effects of system geometry and ambient conditions on solar steam generation for evaporation optimization. Adv. Sustain. Syst. 2019, 3, 1900044.

[42]

Kou, H.; Liu, Z. X.; Zhu, B.; Macharia, D. K.; Ahmed, S.; Wu, B. H.; Zhu, M. F.; Liu, X. G.; Chen, Z. G. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019, 462, 29–38.

[43]

Xu, J. X.; Li, T. X.; Chao, J. W.; Wu, S.; Yan, T. S.; Li, W. C.; Cao, B. Y.; Wang, R. Z. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew. Chem., Int. Ed. 2020, 59, 5202–5210.

[44]

Štefaníková, R.; Kretková, T.; Kuzminova, A.; Hanuš, J.; Vaidulych, M.; Kylián, O.; Biederman, H. Influence of atmospheric pressure dielectric barrier discharge on wettability and drying of poly(ether-ether-ketone) foils. Polym. Degrad. Stab. 2018, 150, 114–121.

[45]

Kusano, Y.; Mortensen, H.; Stenum, B.; Goutianos, S.; Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Sørensen, B. F.; Bindslev, H. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement. Int. J. Adhes. Adhes. 2007, 27, 402–408.

[46]

Zhang, H. X.; Wei, L. Preparation, performance and analysis of carbon fibers with dielectric barrier discharges plasma surface treatment. Adv. Mater. Res. 2011, 391–392, 8–12

[47]

Kurisingal, J. F.; Li, Y. X.; Sagynbayeva, Y.; Chitumalla, R. K.; Vuppala, S.; Rachuri, Y.; Gu, Y. J.; Jang, J.; Park, D. W. Porous aluminum-based DUT metal-organic frameworks for the transformation of CO2 into cyclic carbonates: A computationally supported study. Catal. Today 2020, 352, 227–236.

[48]

Jeong, H. M.; Roshan, R.; Babu, R.; Kim, H. J.; Park, D. W. Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis. Korean J. Chem. Eng. 2018, 35, 438–444.

[49]

Azevedo, R. S. S.; de Sousa, J. R.; Araujo, M. T. F.; Filho, A. J. M.; de Alcantara, B. N.; Araujo, F. M. C.; Queiroz, M. G. L.; Cruz, A. C. R.; Vasconcelos, B. H. B.; Chiang, J. O. et al. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci. Rep. 2018, 8, 1

[50]

Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

[51]

Jahan, I.; Islam, M. A.; Rupam, T. H.; Palash, M. L.; Rocky, K. A.; Saha, B. B. Enhanced water sorption onto bimetallic MOF-801 for energy conversion applications. Sustain. Mater. Techno. 2022, 32, e00442.

[52]

Chen, S.; Sun, Z. Y.; Xiang, W. L.; Shen, C. Y.; Wang, Z. Y.; Jia, X. Y.; Sun, J.; Liu, C. J. Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 2020, 76, 104998.

[53]

Li, L. X.; Zhang, J. P. Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges. Nano Energy 2021, 81, 105682.

[54]

Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191.

[55]

Shao, B.; Wang, Y. D.; Wu, X.; Lu, Y.; Yang, X. F.; Chen, G. Y.; Owens, G.; Xu, H. L. Stackable nickel-cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 11665–11673.

[56]

Yu, H. M.; Wang, D. Y.; Jin, H. Y.; Wu, P.; Wu, X.; Chu, D. W.; Lu, Y.; Yang, X. F.; Xu, H. L. 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Adv. Funct. Mater. 2023, 33, 2214828.

[57]

Sun, Q. The Raman OH stretching bands of liquid water. Vib. Spectrosc. 2009, 51, 213–217.

[58]

Sekine, Y.; Ikeda-Fukazawa, T. Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 2009, 130, 034501.

[59]

Liu, N.; Hao, L.; Zhang, B. Y.; Niu, R.; Gong, J.; Tang, T. Rational design of high-performance bilayer solar evaporator by using waste polyester-derived porous carbon-coated wood. Energy Environ. Mater. 2022, 5, 617–626.

[60]

Le Botlan, D.; Rugraff, Y.; Martin, C.; Colonna, P. Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy. Carbohydr. Res. 1998, 308, 29–36.

[61]

Zhang, Q.; Yang, H. J.; Xiao, X. F.; Wang, H.; Yan, L.; Shi, Z. X.; Chen, Y. L.; Xu, W. L.; Wang, X. B. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J. Mater. Chem. A 2019, 7, 14620–14628.

[62]

Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766.

[63]

Choat, B.; Cobb, A. R.; Jansen, S. Structure and function of bordered pits: New discoveries and impacts on whole-plant hydraulic function. New Phytol. 2008, 177, 608–626.

[64]

Nardini, A.; Salleo, S.; Jansen, S. More than just a vulnerable pipeline: Xylem physiology in the light of ion-mediated regulation of plant water transport. J. Exp. Bot. 2011, 62, 4701–4718.

[65]

Sun, S. J.; Wang, Y. M.; Sun, B. B.; Zhang, F. F.; Xu, Q.; Mi, H. Y.; Li, H.; Tao, X. M.; Guo, Z. H.; Liu, C. T. et al. Versatile janus composite nonwoven solar absorbers with salt resistance for efficient wastewater purification and desalination. ACS Appl. Mater. Interfaces 2021, 13, 24945–24956.

[66]

Sun, S. J.; Tian, Q. L.; Mi, H. Y.; Li, J.; Jing, X.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Fabric-based all-weather-available photo-electro-thermal steam generator with high evaporation rate and salt resistance. Sci. China Mater. 2022, 65, 2479–2490.

[67]

Sun, S. J.; Sun, B. B.; Wang, Y. M.; Antwi-Afari, M. F.; Mi, H. Y.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification. Sep. Purif. Technol. 2021, 278, 119621.

[68]
World Health Organization. Guidelines for Drinking-Water Quality; 4th ed.; Geneva, 2011.
Nano Research
Pages 6661-6672
Cite this article:
Wu T, Zhao L, Xu Y, et al. An arch-shape wood evaporator decorated by metal-organic framework for solar interface evaporation. Nano Research, 2024, 17(7): 6661-6672. https://doi.org/10.1007/s12274-024-6585-6
Topics:

448

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 16 November 2023
Revised: 06 February 2024
Accepted: 23 February 2024
Published: 22 March 2024
© Tsinghua University Press 2024
Return