Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Integrating energy-storage devices (supercapacitors) and shape-deformation devices (actuators) advances the miniaturization and multifunctional development of soft robots. However, soft robots necessitate supercapacitors with high energy-storage performance and actuators with excellent actuation capability. Here, inspired by ant nests, we present a porous structure fabricated by MXene-graphene-methylcellulose (M-GMC) composite, which overcomes the self-stacking of MXene nanosheets and offers a larger specific surface area. The porous structure provides more channels and active sites for electrolyte ions, resulting in high energy storage performance. The areal capacitance of the M-GMC electrode reaches up to 787.9 mF·cm−2, significantly superior to that of the pristine MXene electrode (449.1 mF·cm−2). Moreover, the M-GMC/polyethylene bilayer composites with energy storage and multi-responsive actuation functions are developed. The M-GMC is used as the electrode and the polyethylene is used as the encapsulation layer of the quasi-solid-state supercapacitor. Meanwhile, the actuators fabricated by the bilayer composites can be driven by light or low voltage (≤ 9 V). The maximum bending curvature is up to 5.11 cm−1. Finally, a smart gripper and a fully encapsulated smart integrated circuit based on the M-GMC/polyethylene are designed. The smart gripper enables programmable control with multi-stage deformations. The applications realize the intelligence and miniaturization of soft robots. The ant-nest-inspired M-GMC composites would provide a promising development strategy for soft robots and smart integrated devices.
Bae, G. Y.; Han, J. T.; Lee, G.; Lee, S.; Kim, S. W.; Park, S.; Kwon, J.; Jung, S.; Cho, K. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 2018, 30, 1803388.
Jung, M.; Kim, K.; Kim, B.; Cheong, H.; Shin, K.; Kwon, O. S.; Park, J. J.; Jeon, S. Paper-based bimodal sensor for electronic skin applications. ACS Appl. Mater. Interfaces 2017, 9, 26974–26982.
Zhu, P. C.; Wang, Y. L.; Wang, Y.; Mao, H. Y.; Zhang, Q.; Deng, Y. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for e-skin application. Adv. Energy Mater. 2020, 10, 2001945.
Ma, X. L.; Wang, C. F.; Wei, R. L.; He, J. Q.; Li, J.; Liu, X. H.; Huang, F. C.; Ge, S. P.; Tao, J.; Yuan, Z. Q. et al. Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 2022, 16, 2789–2797.
Zheng, S. H.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y. X.; Ma, J. X.; Liu, S. Z.; Wu, Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, 2005449.
Lin, Y. J.; Chen, J. Q.; Tavakoli, M. M.; Gao, Y.; Zhu, Y. D.; Zhang, D. Q.; Kam, M.; He, Z. B.; Fan, Z. Y. Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 2019, 31, 1804285.
Zhang, Y. P.; Wang, L. L.; Zhao, L. J.; Wang, K.; Zheng, Y. Q.; Yuan, Z. Y.; Wang, D. Y.; Fu, X. Y.; Shen, G.; Han, W. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 2021, 33, 2007890.
Chen, L. Z.; Weng, M. C.; Zhou, P. D.; Huang, F.; Liu, C. H.; Fan, S. S.; Zhang, W. Graphene-based actuator with integrated-sensing function. Adv. Funct. Mater. 2019, 29, 1806057.
Amjadi, M.; Sitti, M. Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 2018, 5, 1800239.
Zhou, P. D.; Lin, J.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Photo-thermoelectric generator integrated in graphene-based actuator for self-powered sensing function. Nano Res. 2022, 15, 5376–5383.
Weng, M. C.; Duan, Y. M.; Zhou, P. D.; Huang, F.; Zhang, W.; Chen, L. Z. Electric-fish-inspired actuator with integrated energy-storage function. Nano Energy 2020, 68, 104365.
Wang, Y.; Luo, Z. L.; Qian, Y. Q.; Zhang, W.; Chen, L. Z. Monolithic MXene composites with multi-responsive actuating and energy-storage multi-functions. Chem. Eng. J. 2023, 454, 140513.
Xu, T.; Yang, D. Z.; Fan, Z. J.; Li, X. F.; Liu, Y. X.; Guo, C.; Zhang, M.; Yu, Z. Z. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 2019, 152, 134–143.
Zhao, T. Y.; Yang, D. Z.; Hao, S. M.; Xu, T.; Zhang, M.; Zhou, W. D.; Yu, Z. Optimized electron/ion transport by constructing radially oriented channels in MXene hybrid fiber electrodes for high-performance supercapacitors at low temperatures. J. Mater. Chem. A 2023, 11, 1742–1755.
Luo, X. J.; Li, L. L.; Zhang, H. B.; Zhao, S.; Zhang, Y.; Chen, W.; Yu, Z. Z. Multifunctional Ti3C2T x MXene/low-density polyethylene soft robots with programmable configuration for amphibious motions. ACS Appl. Mater. Interfaces 2021, 13, 45833–45842.
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005
Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.
Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C. F.; Van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339–345.
Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.
Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2016, 28, 1517–1522.
Zhu, M. S.; Huang, Y.; Deng, Q. H.; Zhou, J.; Pei, Z. X.; Xue, Q.; Huang, Y.; Wang, Z. F.; Li, H. F.; Huang, Q. et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 2016, 6, 1600969.
VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133.
Wang, Y. M.; Wang, X.; Li, X. L.; Bai, Y.; Xiao, H. H.; Liu, Y.; Yuan, G. H. Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 2021, 405, 126664.
Zhou, Y. H.; Maleski, K.; Anasori, B.; Thostenson, J. O.; Pang, Y. K.; Feng, Y. Y.; Zeng, K. X.; Parker, C. B.; Zauscher, S.; Gogotsi, Y. et al. Ti3C2T x MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 2020, 14, 3576–3586.
Fan, Z. M.; Wang, Y. S.; Xie, Z. M.; Wang, D. L.; Yuan, Y.; Kang, H. J.; Su, B. L.; Cheng, Z. J.; Liu, Y. Y. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018, 5, 1800750.
El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.
Bellani, S.; Petroni, E.; Del Rio Castillo, A. E.; Curreli, N.; Martín-García, B.; Oropesa-Nuñez, R.; Prato, M.; Bonaccorso, F. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater. 2019, 29, 1807659.
Shi, X. Y.; Zhou, F.; Peng, J. X.; Wu, R.; Wu, Z. S.; Bao, X. H. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv. Funct. Mater. 2019, 29, 1902860.
Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction. Adv. Mater. 2020, 32, 1908475.
Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.
Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.
Minter, N. J.; Franks, N. R.; Robson Brown, K. A. Morphogenesis of an extended phenotype: Four-dimensional ant nest architecture. J. R. Soc. Interface 2012, 9, 586–595.
Mikheyev, A. S.; Tschinkel, W. R. Nest architecture of the ant Formica pallidefulva: Structure, costs and rules of excavation. Insectes Soc. 2004, 51, 30–36.
Bollazzi, M.; Roces, F. To build or not to build: Circulating dry air organizes collective building for climate control in the leaf-cutting ant Acromyrmex ambiguus. Anim. Behav. 2007, 74, 1349–1355.
Yu, R.; Chung, S. H.; Chen, C. H.; Manthiram, A. An ant-nest-like cathode substrate for lithium-sulfur batteries with practical cell fabrication parameters. Energy Storage Mater. 2019, 18, 491–499.
Mu, H. C.; Zhang, Z. K.; Lian, C.; Tian, X. H.; Wang, G. C. Integrated construction improving electrochemical performance of stretchable supercapacitors based on ant-nest amphiphilic gel electrolytes. Small 2022, 18, 2204357.
Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.
Guo, T. Z.; Fu, M. S.; Zhou, D.; Pang, L. X.; Su, J. Z.; Lin, H. X.; Yao, X. G.; Sombra, A. S. B. Flexible Ti3C2T x /graphene films with large-sized flakes for supercapacitors. Small Struct. 2021, 2, 2100015.
Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 2012, 34, 866–873.
Jin, Y. G.; Hawkins, S. C.; Huynh, C. P.; Su, S. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ. Sci. 2013, 6, 2591–2596.
Wang, B. M.; Jiang, R. S.; Song, W. Z.; Liu, H. Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique. Russ. J. Phys. Chem. A 2017, 91, 1517–1526.
Li, H. P.; Li, X. R.; Liang, J. J.; Chen, Y. S. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 2019, 9, 1803987.
Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561.
Xu, W. N.; Qin, Z.; Chen, C. T.; Kwag, H. R.; Ma, Q. L.; Sarkar, A.; Buehler, M. J.; Gracias, D. H. Ultrathin thermoresponsive self-folding 3D graphene. Sci. Adv. 2017, 3, e1701084.
Liu, H. Y.; Liu, C. Y.; Peng, S. G.; Pan, B. L.; Lu, C. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films. Carbohydr. Polym. 2018, 182, 52–60.
Wang, Y.; Dou, H.; Wang, J.; Ding, B.; Xu, Y. L.; Chang, Z.; Hao, X. D. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 2016, 327, 221–228.
Lee, J. S.; Kim, S. I.; Yoon, J. C.; Jang, J. H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 2013, 7, 6047–6055.
Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.
Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.
Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.
Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2T x MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.
Yao, Z.; Seong, H. J.; Jang, Y. S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol. Environ. Safe. 2022, 242, 113933.
Zhao, T. Y.; Zhang, D. M.; Yu, C. M.; Jiang, L. Facile fabrication of a polyethylene mesh for oil/water separation in a complex environment. ACS Appl. Mater. Interfaces 2016, 8, 24186–24191.
Olmos, D.; Martínez, F.; González-Gaitano, G.; González-Benito, J. Effect of the presence of silica nanoparticles in the coefficient of thermal expansion of LDPE. Eur. Polym. J. 2011, 47, 1495–1502.
Liu, W. J.; Cheng, Y. F.; Liu, N. S.; Yue, Y.; Lei, D. D.; Su, T. Y.; Zhu, M.; Zhang, Z.; Zeng, W.; Guo, H. Z. et al. Bionic MXene actuator with multiresponsive modes. Chem. Eng. J. 2021, 417, 129288.
Cai, G. F.; Ciou, J. H.; Liu, Y. Z.; Jiang, Y.; Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 2019, 5, eaaw7956.
Hu, Y.; Yang, L. L.; Yan, Q. Y.; Ji, Q. X.; Chang, L. F.; Zhang, C. C.; Yan, J.; Wang, R. R.; Zhang, L.; Wu, G. et al. Self-locomotive soft actuator based on asymmetric microstructural Ti3C2T x MXene film driven by natural sunlight fluctuation. ACS Nano 2021, 15, 5294–5306.