AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ant-nest-inspired porous structure for MXene composites with high-performance energy-storage and actuating multifunctions

Yi Wang1,2,§Guanfeng Xue1,2,§Zhiling Luo1,2( )Wei Zhang1,2Luzhuo Chen1,2( )
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China

§ Yi Wang and Guanfeng Xue contributed equally to this work.

Show Author Information

Graphical Abstract

Inspired by ant nests, porous composite films are fabricated by compositing MXene, graphene, and methylcellulose, which exhibit excellent electrochemical performance. High-performance supercapacitors and multi-responsive actuators based on the composite films are constructed for integrated devices, realizing the intelligence and miniaturization of soft robots.

Abstract

Integrating energy-storage devices (supercapacitors) and shape-deformation devices (actuators) advances the miniaturization and multifunctional development of soft robots. However, soft robots necessitate supercapacitors with high energy-storage performance and actuators with excellent actuation capability. Here, inspired by ant nests, we present a porous structure fabricated by MXene-graphene-methylcellulose (M-GMC) composite, which overcomes the self-stacking of MXene nanosheets and offers a larger specific surface area. The porous structure provides more channels and active sites for electrolyte ions, resulting in high energy storage performance. The areal capacitance of the M-GMC electrode reaches up to 787.9 mF·cm−2, significantly superior to that of the pristine MXene electrode (449.1 mF·cm−2). Moreover, the M-GMC/polyethylene bilayer composites with energy storage and multi-responsive actuation functions are developed. The M-GMC is used as the electrode and the polyethylene is used as the encapsulation layer of the quasi-solid-state supercapacitor. Meanwhile, the actuators fabricated by the bilayer composites can be driven by light or low voltage (≤ 9 V). The maximum bending curvature is up to 5.11 cm−1. Finally, a smart gripper and a fully encapsulated smart integrated circuit based on the M-GMC/polyethylene are designed. The smart gripper enables programmable control with multi-stage deformations. The applications realize the intelligence and miniaturization of soft robots. The ant-nest-inspired M-GMC composites would provide a promising development strategy for soft robots and smart integrated devices.

Electronic Supplementary Material

Video
6587_ESM2.mp4
6587_ESM3.mp4
6587_ESM4.mp4
6587_ESM5.mp4
Download File(s)
6587_ESM1.pdf (2.7 MB)

References

[1]

Bae, G. Y.; Han, J. T.; Lee, G.; Lee, S.; Kim, S. W.; Park, S.; Kwon, J.; Jung, S.; Cho, K. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 2018, 30, 1803388.

[2]

Jung, M.; Kim, K.; Kim, B.; Cheong, H.; Shin, K.; Kwon, O. S.; Park, J. J.; Jeon, S. Paper-based bimodal sensor for electronic skin applications. ACS Appl. Mater. Interfaces 2017, 9, 26974–26982.

[3]

Zhu, P. C.; Wang, Y. L.; Wang, Y.; Mao, H. Y.; Zhang, Q.; Deng, Y. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for e-skin application. Adv. Energy Mater. 2020, 10, 2001945.

[4]

Ma, X. L.; Wang, C. F.; Wei, R. L.; He, J. Q.; Li, J.; Liu, X. H.; Huang, F. C.; Ge, S. P.; Tao, J.; Yuan, Z. Q. et al. Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 2022, 16, 2789–2797.

[5]

Zheng, S. H.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y. X.; Ma, J. X.; Liu, S. Z.; Wu, Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, 2005449.

[6]

Lin, Y. J.; Chen, J. Q.; Tavakoli, M. M.; Gao, Y.; Zhu, Y. D.; Zhang, D. Q.; Kam, M.; He, Z. B.; Fan, Z. Y. Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 2019, 31, 1804285.

[7]

Zhang, Y. P.; Wang, L. L.; Zhao, L. J.; Wang, K.; Zheng, Y. Q.; Yuan, Z. Y.; Wang, D. Y.; Fu, X. Y.; Shen, G.; Han, W. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 2021, 33, 2007890.

[8]

Chen, L. Z.; Weng, M. C.; Zhou, P. D.; Huang, F.; Liu, C. H.; Fan, S. S.; Zhang, W. Graphene-based actuator with integrated-sensing function. Adv. Funct. Mater. 2019, 29, 1806057.

[9]

Amjadi, M.; Sitti, M. Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 2018, 5, 1800239.

[10]

Zhou, P. D.; Lin, J.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Photo-thermoelectric generator integrated in graphene-based actuator for self-powered sensing function. Nano Res. 2022, 15, 5376–5383.

[11]

Weng, M. C.; Duan, Y. M.; Zhou, P. D.; Huang, F.; Zhang, W.; Chen, L. Z. Electric-fish-inspired actuator with integrated energy-storage function. Nano Energy 2020, 68, 104365.

[12]

Wang, Y.; Luo, Z. L.; Qian, Y. Q.; Zhang, W.; Chen, L. Z. Monolithic MXene composites with multi-responsive actuating and energy-storage multi-functions. Chem. Eng. J. 2023, 454, 140513.

[13]

Xu, T.; Yang, D. Z.; Fan, Z. J.; Li, X. F.; Liu, Y. X.; Guo, C.; Zhang, M.; Yu, Z. Z. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 2019, 152, 134–143.

[14]

Zhao, T. Y.; Yang, D. Z.; Hao, S. M.; Xu, T.; Zhang, M.; Zhou, W. D.; Yu, Z. Optimized electron/ion transport by constructing radially oriented channels in MXene hybrid fiber electrodes for high-performance supercapacitors at low temperatures. J. Mater. Chem. A 2023, 11, 1742–1755.

[15]

Luo, X. J.; Li, L. L.; Zhang, H. B.; Zhao, S.; Zhang, Y.; Chen, W.; Yu, Z. Z. Multifunctional Ti3C2T x MXene/low-density polyethylene soft robots with programmable configuration for amphibious motions. ACS Appl. Mater. Interfaces 2021, 13, 45833–45842.

[16]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005

[17]

Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

[18]

Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C. F.; Van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339–345.

[19]

Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.

[20]

Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2016, 28, 1517–1522.

[21]

Zhu, M. S.; Huang, Y.; Deng, Q. H.; Zhou, J.; Pei, Z. X.; Xue, Q.; Huang, Y.; Wang, Z. F.; Li, H. F.; Huang, Q. et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 2016, 6, 1600969.

[22]

VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133.

[23]

Wang, Y. M.; Wang, X.; Li, X. L.; Bai, Y.; Xiao, H. H.; Liu, Y.; Yuan, G. H. Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 2021, 405, 126664.

[24]

Zhou, Y. H.; Maleski, K.; Anasori, B.; Thostenson, J. O.; Pang, Y. K.; Feng, Y. Y.; Zeng, K. X.; Parker, C. B.; Zauscher, S.; Gogotsi, Y. et al. Ti3C2T x MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 2020, 14, 3576–3586.

[25]

Fan, Z. M.; Wang, Y. S.; Xie, Z. M.; Wang, D. L.; Yuan, Y.; Kang, H. J.; Su, B. L.; Cheng, Z. J.; Liu, Y. Y. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018, 5, 1800750.

[26]

El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.

[27]

Bellani, S.; Petroni, E.; Del Rio Castillo, A. E.; Curreli, N.; Martín-García, B.; Oropesa-Nuñez, R.; Prato, M.; Bonaccorso, F. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater. 2019, 29, 1807659.

[28]

Shi, X. Y.; Zhou, F.; Peng, J. X.; Wu, R.; Wu, Z. S.; Bao, X. H. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv. Funct. Mater. 2019, 29, 1902860.

[29]

Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction. Adv. Mater. 2020, 32, 1908475.

[30]

Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.

[31]

Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

[32]

Minter, N. J.; Franks, N. R.; Robson Brown, K. A. Morphogenesis of an extended phenotype: Four-dimensional ant nest architecture. J. R. Soc. Interface 2012, 9, 586–595.

[33]

Mikheyev, A. S.; Tschinkel, W. R. Nest architecture of the ant Formica pallidefulva: Structure, costs and rules of excavation. Insectes Soc. 2004, 51, 30–36.

[34]

Bollazzi, M.; Roces, F. To build or not to build: Circulating dry air organizes collective building for climate control in the leaf-cutting ant Acromyrmex ambiguus. Anim. Behav. 2007, 74, 1349–1355.

[35]

Yu, R.; Chung, S. H.; Chen, C. H.; Manthiram, A. An ant-nest-like cathode substrate for lithium-sulfur batteries with practical cell fabrication parameters. Energy Storage Mater. 2019, 18, 491–499.

[36]

Mu, H. C.; Zhang, Z. K.; Lian, C.; Tian, X. H.; Wang, G. C. Integrated construction improving electrochemical performance of stretchable supercapacitors based on ant-nest amphiphilic gel electrolytes. Small 2022, 18, 2204357.

[37]

Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.

[38]

Guo, T. Z.; Fu, M. S.; Zhou, D.; Pang, L. X.; Su, J. Z.; Lin, H. X.; Yao, X. G.; Sombra, A. S. B. Flexible Ti3C2T x /graphene films with large-sized flakes for supercapacitors. Small Struct. 2021, 2, 2100015.

[39]

Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 2012, 34, 866–873.

[40]

Jin, Y. G.; Hawkins, S. C.; Huynh, C. P.; Su, S. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ. Sci. 2013, 6, 2591–2596.

[41]

Wang, B. M.; Jiang, R. S.; Song, W. Z.; Liu, H. Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique. Russ. J. Phys. Chem. A 2017, 91, 1517–1526.

[42]

Li, H. P.; Li, X. R.; Liang, J. J.; Chen, Y. S. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 2019, 9, 1803987.

[43]

Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561.

[44]

Xu, W. N.; Qin, Z.; Chen, C. T.; Kwag, H. R.; Ma, Q. L.; Sarkar, A.; Buehler, M. J.; Gracias, D. H. Ultrathin thermoresponsive self-folding 3D graphene. Sci. Adv. 2017, 3, e1701084.

[45]

Liu, H. Y.; Liu, C. Y.; Peng, S. G.; Pan, B. L.; Lu, C. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films. Carbohydr. Polym. 2018, 182, 52–60.

[46]

Wang, Y.; Dou, H.; Wang, J.; Ding, B.; Xu, Y. L.; Chang, Z.; Hao, X. D. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 2016, 327, 221–228.

[47]

Lee, J. S.; Kim, S. I.; Yoon, J. C.; Jang, J. H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 2013, 7, 6047–6055.

[48]

Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

[49]

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

[50]

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

[51]

Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

[52]

Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2T x MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

[53]

Yao, Z.; Seong, H. J.; Jang, Y. S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol. Environ. Safe. 2022, 242, 113933.

[54]

Zhao, T. Y.; Zhang, D. M.; Yu, C. M.; Jiang, L. Facile fabrication of a polyethylene mesh for oil/water separation in a complex environment. ACS Appl. Mater. Interfaces 2016, 8, 24186–24191.

[55]

Olmos, D.; Martínez, F.; González-Gaitano, G.; González-Benito, J. Effect of the presence of silica nanoparticles in the coefficient of thermal expansion of LDPE. Eur. Polym. J. 2011, 47, 1495–1502.

[56]

Liu, W. J.; Cheng, Y. F.; Liu, N. S.; Yue, Y.; Lei, D. D.; Su, T. Y.; Zhu, M.; Zhang, Z.; Zeng, W.; Guo, H. Z. et al. Bionic MXene actuator with multiresponsive modes. Chem. Eng. J. 2021, 417, 129288.

[57]

Cai, G. F.; Ciou, J. H.; Liu, Y. Z.; Jiang, Y.; Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 2019, 5, eaaw7956.

[58]

Hu, Y.; Yang, L. L.; Yan, Q. Y.; Ji, Q. X.; Chang, L. F.; Zhang, C. C.; Yan, J.; Wang, R. R.; Zhang, L.; Wu, G. et al. Self-locomotive soft actuator based on asymmetric microstructural Ti3C2T x MXene film driven by natural sunlight fluctuation. ACS Nano 2021, 15, 5294–5306.

Nano Research
Pages 6673-6685
Cite this article:
Wang Y, Xue G, Luo Z, et al. Ant-nest-inspired porous structure for MXene composites with high-performance energy-storage and actuating multifunctions. Nano Research, 2024, 17(7): 6673-6685. https://doi.org/10.1007/s12274-024-6587-4
Topics:

666

Views

1

Crossref

3

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 11 January 2024
Revised: 23 February 2024
Accepted: 25 February 2024
Published: 03 April 2024
© Tsinghua University Press 2024
Return