AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancing the electrochemical performance of Na metal anodes via local eutectic melting in porous Al-Cu alloy hosts

Tao Hu1Qiang Wu1Cheng Wang1Jialu Chen1Fu Su1Zibo Chen1Yizhou Wang2Jianyu Chen1( )Yanwen Ma1,3( )Jin Zhao1( )
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Suzhou Vocational Institute of Industrial Technology, 1 Zhineng Avenue, Suzhou International Education Park, Suzhou 215104, China
Show Author Information

Graphical Abstract

A novel porous Al-Cu alloy host was fabricated via local eutectic melting, enhancing the Na metal's performance by creating a conductive structure that supports mechanical integrity, facilitates ion diffusion, and accommodates volume changes during cycling.

Abstract

Sodium (Na) metal batteries (SMBs) have emerged as promising alternatives to lithium metal batteries for large-scale energy storage applications, owing to their cost-effectiveness, abundance, and favorable redox potential. However, the practical implementation of SMBs faces several challenges associated with the Na metal anode, including the formation of dendrites, low Coulombic efficiency, and capacity fading. Here, we propose a novel approach to enhance the electrochemical performance of Na metal anodes through a porous Al-Cu alloy host (PAC) fabricated by a local eutectic melting engineering. The local eutectic melting facilitates the development of a conductive network, offering mechanical support, and the porous structure provides abundant channels for the diffusion of Na ions and accommodates volume fluctuations in the Na metal during charge–discharge cycling. Moreover, the PAC exhibits a high average Coulombic efficiency of 99.8% at 1 mA·cm−2 for 1 mAh·cm−2 and a low voltage polarization of 19 mV during 500 cycles. This study provides valuable insight into the design and fabrication of high-performance Na metal anodes, which hold significant promise for the advancements of next-generation energy storage systems.

Electronic Supplementary Material

Download File(s)
6588_ESM.pdf (1.8 MB)

References

[1]

Xia, Y. C.; Zhou, P.; Kong, X.; Tian, J. K.; Zhang, W. L.; Yan, S. S.; Hou, W. H.; Zhou, H. Y.; Dong, H.; Chen, X. X. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 2023, 8, 934–945.

[2]

Zhuang, R.; Zhang, X. H.; Qu, C. Z.; Xu, X. S.; Yang, J. Y.; Ye, Q.; Liu, Z.; Kaskel, S.; Xu, F.; Wang, H. Q. Fluorinated porous frameworks enable robust anode-less sodium metal batteries. Sci. Adv. 2023, 9, eadh8060.

[3]

Xie, Y. Y.; Liu, C. Y.; Zheng, J. Q.; Li, H. X.; Zhang, L. Y.; Zhang, Z. A. NaF-rich protective layer on PTFE coating microcrystalline graphite for highly stable Na metal anodes. Nano Res. 2023, 16, 2436–2444.

[4]

Yi, X. H.; Feng, Y. H.; Rao, A. M.; Zhou, J.; Wang, C. X.; Lu, B. G. Quasi-solid aqueous electrolytes for low-cost sustainable alkali-metal batteries. Adv. Mater. 2023, 35, 2302280.

[5]

Chen, J. Y.; Wang, Y. Z.; Li, S. J.; Chen, H. R.; Qiao, X.; Zhao, J.; Ma, Y. W.; Alshareef, H. N. Porous metal current collectors for alkali metal batteries. Adv. Sci. 2023, 10, 2205695.

[6]

Chen, J. Y.; Xu, X.; He, Q.; Ma, Y. W. Advanced current collectors for alkali metal anodes. Chem. Res. Chin. Univ. 2020, 36, 386–401.

[7]

Zhang, L. J.; Zhang, T. T.; Zhao, Y. L.; Dong, G. F.; Lv, S. K.; Ma, S. L.; Song, S. X.; Quintana, M. Doping engineering of lithium-aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines. Nano Res. 2024, 17, 1646–1654.

[8]

Parameswaran, A. K.; Azadmanjiri, J.; Palaniyandy, N.; Pal, B.; Palaniswami, S.; Dekanovsky, L.; Wu, B.; Sofer, Z. Recent progress of nanotechnology in the research framework of all-solid-state batteries. Nano Energy 2023, 105, 107994.

[9]

Zhang, W.; Yang, X. K.; Wang, J. C.; Zheng, J. L.; Yue, K.; Liu, T. F.; Wang, Y.; Nai, J. W.; Liu, Y. J.; Tao, X. Y. Rapidly constructing sodium fluoride-rich interface by pressure and diglyme-induced defluorination reaction for stable sodium metal anode. Small 2023, 19, 2207540.

[10]

Soni, C. B.; Bera, S.; Sungjemmenla; Vineeth, S. K.; Kumar, H.; Kumar, V. Novel organic molecule enabling a highly-stable and reversible sodium metal anode for room-temperature sodium-metal batteries. J. Energy Stor. 2023, 71, 108132.

[11]

Moorthy, M.; Moorthy, B.; Ganesan, B. K.; Saha, A.; Yu, S.; Kim, D. H.; Hong, S.; Park, S.; Kang, K.; Thangavel, R. et al. A series of hybrid multifunctional interfaces as artificial SEI layer for realizing dendrite free, and long-life sodium metal anodes. Adv. Funct. Mater. 2023, 33, 2300135.

[12]

Lin, X. T.; Sun, Q.; Kim, J. T.; Li, X. F.; Zhang, J. J.; Sun, X. L. Superoxide-based Na-O2 batteries: Background, current status and future prospects. Nano Energy 2023, 112, 108466.

[13]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[14]

Qiu, Y. S.; Xu, J. Challenges and prospects for room temperature solid-state sodium-sulfur batteries. Nano Res. 2024, 17, 1402–1426.

[15]

Xu, C. F.; Dong, Y. L.; Shen, Y. L.; Zhao, H. P.; Li, L. Q.; Shao, G. S.; Lei, Y. Fundamental understanding of nonaqueous and hybrid Na-CO2 batteries: Challenges and perspectives. Small 2023, 19, 2206445.

[16]

Wang, H.; Bai, W. L.; Wang, H.; Kong, D. Z.; Xu, T. T.; Zhang, Z. F.; Zang, J. H.; Wang, X. C.; Zhang, S.; Tian, Y. T. et al. 3D printed Au/rGO microlattice host for dendrite-free sodium metal anode. Energy Stor. Mater. 2023, 55, 631–641.

[17]

Huang, B. C.; Sun, S. X.; Wan, J.; Zhang, W.; Liu, S. Y.; Zhang, J. W.; Yan, F. Y.; Liu, Y.; Xu, J.; Cheng, F. Y. et al. Ultrahigh nitrogen content carbon nanosheets for high stable sodium metal anodes. Adv. Sci. 2023, 10, 2206845.

[18]

Li, S. J.; Chen, J. Y.; Liu, G. Y.; Wu, H. B.; Chen, H. R.; Li, M. S.; Shi, L.; Wang, Y. Z.; Ma, Y. W.; Zhao, J. Ultralight porous Cu nanowire aerogels as stable hosts for high Li-content metal anodes. ACS Appl. Mater. Interfaces 2022, 14, 56697–56706.

[19]

Cai, Z. J.; Tang, F.; Yang, Y.; Xu, S. T.; Xu, C.; Liu, L.; Rui, X. H. A multifunctional super-sodiophilic coating on aluminum current collector for high-performance anode-free Na-metal batteries. Nano Energy 2023, 116, 108814.

[20]

Xu, J.; Yang, J. H.; Qiu, Y. S.; Jin, Y.; Wang, T. Y.; Sun, B.; Wang, G. X. Achieving high-performance sodium metal anodes: From structural design to reaction kinetic improvement. Nano Res. 2024, 17, 1288–1312.

[21]

Lu, G. X.; Nai, J. W.; Luan, D. Y.; Tao, X. Y.; Lou, X. W. Surface engineering toward stable lithium metal anodes. Sci. Adv. 2023, 9, eadf1550.

[22]

Wang, C. Z.; Zheng, Y.; Chen, Z. N.; Zhang, R. R.; He, W.; Li, K. X.; Yan, S.; Cui, J. Q.; Fang, X. L.; Yan, J. W. et al. Robust anode-free sodium metal batteries enabled by artificial sodium formate interface. Adv. Energy Mater. 2023, 13, 2204125.

[23]

Xia, X. M.; Yang, Y.; Chen, K. Z.; Xu, S. T.; Tang, F.; Liu, L.; Xu, C.; Rui, X. H. Enhancing interfacial strength and wettability for wide-temperature sodium metal batteries. Small 2023, 19, 2300907.

[24]

Wang, C. Z.; Wu, K. H.; Cui, J. Q.; Fang, X. L.; Li, J.; Zheng, N. F. Robust room-temperature sodium-sulfur batteries enabled by a sandwich-structured MXene@ C/Polyolefin/MXene@C dual-functional separator. Small 2022, 18, 2106983.

[25]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[26]

Kang, Q.; Zhuang, Z. C; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[27]

Yuan, C. B.; Li, R.; Zhan, X. W.; Sprenkle, V. L.; Li, G. S. Stabilizing metallic Na anodes via sodiophilicity regulation: A review. Materials 2022, 15, 4636.

[28]

Zhao, W. Y.; Guo, M.; Zuo, Z. J.; Zhao, X. L.; Dou, H. L.; Zhang, Y. J.; Li, S. Y.; Wu, Z. C.; Shi, Y. Y.; Ma, Z. F. et al. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery. Engineering 2022, 11, 87–94.

[29]

Chen, J. Y.; Wang, Y. Z.; Tian, Z. N.; Zhao, J.; Ma, Y. W.; Alshareef, H. N. Recent developments in three-dimensional Zn metal anodes for battery applications. InfoMat 2024, 6, e12485.

[30]

Chen, J. Y.; Qiao, X.; Fu, W.; Han, X. R.; Wu, Q.; Wang, Y. Z.; Zhang, Y.; Shi, L.; Zhao, J.; Ma, Y. W. Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes. SmartMat 2023, 4, e1174.

[31]

Luo, Y.; Yang, X. F.; Wang, C. H.; Fraser, A.; Zhang, H. Z.; Sun, X. L.; Li, X. F. Advanced metal anodes and their interface design toward safe metal batteries: A comprehensive review. Prog. Mater. Sci. 2023, 139, 101171.

[32]
Chen, C.; Yao, W. J.; Tang, Y. B. Emerging solutions to enable the efficient use of sodium metal anodes: Progress and perspectives. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202310833.
[33]

Wang, Z. X.; Huang, Z. X.; Wang, H.; Li, W. D.; Wang, B. Y.; Xu, J. M.; Xu, T. T.; Zang, J. H.; Kong, D. Z.; Li, X. J. et al. 3D-printed sodiophilic V2CT x /rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 2022, 16, 9105–9116.

[34]

Li, Z. P.; Zhu, K. J.; Liu, P.; Jiao, L. F. 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 2022, 12, 2100359.

[35]

Chi, S. S.; Qi, X. G.; Hu, Y. S.; Fan, L. Z. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 2018, 8, 1702764.

[36]

Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C. Y.; Janek, J.; Schröder, D.; Wang, G. X. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 2020, 32, 1903891.

[37]

Zhang, J. L.; Wang, W. H.; Shi, R. Y.; Wang, W.; Wang, S. W.; Kang, F. Y.; Li, B. H. Three-dimensional carbon felt host for stable sodium metal anode. Carbon 2019, 155, 50–55.

[38]

Liu, S.; Tang, S.; Zhang, X. Y.; Wang, A. X.; Yang, Q. H.; Luo, J. Y. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 2017, 17, 5862–5868.

[39]

Kim, S. Y.; Park, J. S.; Nakajima, H. Fabrication of lotus-type porous aluminum through thermal decomposition method. Metall. Mater. Trans. A 2009, 40, 937–942.

[40]
Asholt, P. Aluminium foam produced by the melt foaming route process, properties and applications. In Proceedings of International Conference on Metal Foam and Porous Metal Structures, 1999, pp 133–140.
[41]

Hangai, Y.; Utsunomiya, T. Fabrication of porous aluminum by friction stir processing. Metall. Mater. Trans. A 2009, 40, 275–277.

[42]

Xie, Z. K.; Yamada, Y.; Banno, T. Fabrication of micro porous aluminum by powder sintering. Mater. Sci. Forum 2007, 539–543, 2778–2781.

[43]

Yasuda, H.; Ohnaka, I.; Fujimoto, S.; Takezawa, N.; Tsuchiyama, A.; Nakano, T.; Uesugi, K. Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field. Scr. Mater. 2006, 54, 527–532.

[44]

Wang, Y. Y.; Wang, Z. J.; Lei, D. N.; Lv, W.; Zhao, Q.; Ni, B.; Liu, Y.; Li, B. H.; Kang, F. Y.; He, Y. B. Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance. ACS Appl. Mater. Interfaces 2018, 10, 20244–20249.

[45]

Chen, J. Y.; Li, S. J.; Qiao, X.; Wang, Y. Z.; Lei, L. N.; Lyu, Z.; Zhao, J.; Zhang, Y.; Liu, R. Q.; Liang, Q. H. et al. Integrated porous Cu host induced high-stable bidirectional Li plating/stripping behavior for practical Li metal batteries. Small 2022, 18, 2105999.

[46]

Chen, J. Y.; Zhao, J.; Lei, L. N.; Li, P.; Chen, J.; Zhang, Y.; Wang, Y. Z.; Ma, Y. W.; Wang, D. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Lett. 2020, 20, 3403–3410.

[47]

Kehl, W.; Fischmeister, H. F. Liquid Phase Sintering of Al-Cu Compacts. Powder Metall. 1980, 23, 113–119.

[48]

Deng, Z. H.; Yin, H. Q.; Zhang, C.; Zhang, G. F.; Zhang, T.; Liu, Z. K.; Wang, H. B.; Qu, X. H. Sintering mechanism of Cu-9Al alloy prepared from elemental powders. Prog. Nat. Sci.: Mater. Int. 2019, 29, 425–431.

[49]

Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 2017, 29, 1703729.

[50]

Cao, Q. H.; Gao, Y.; Pu, J.; Zhao, X.; Wang, Y. X.; Chen, J. P.; Guan, C. Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 2023, 14, 641.

[51]

Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Gradient design for high-energy and high-power batteries. Adv. Mater. 2022, 34, 2202780.

Nano Research
Pages 6111-6118
Cite this article:
Hu T, Wu Q, Wang C, et al. Enhancing the electrochemical performance of Na metal anodes via local eutectic melting in porous Al-Cu alloy hosts. Nano Research, 2024, 17(7): 6111-6118. https://doi.org/10.1007/s12274-024-6588-3
Topics:

796

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 January 2024
Revised: 24 February 2024
Accepted: 25 February 2024
Published: 03 April 2024
© Tsinghua University Press 2024
Return