Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Interactions of hepatic macrophages with local inflammatory microenvironment is the key factor promoting the development of acute liver failure (ALF). Hence, reprogramming pro-inflammatory M1 into anti-inflammatory M2 phenotype may offer a promising strategy for treating ALF by targeting inflammation. Our group found Carvedilol possessed potential anti-inflammatory property previously, which had been scarcely reported in ALF. We present a synergy strategy to induce macrophages into the phenotype M2-type anti-inflammatory macrophages with interleukin-4 (IL-4) and IL-10 at first. Then Carvedilol is loaded on the macrophage membrane-camouflaged biomimetic nano-platform (termed as M2M@CNP) to evade reticuloendothelial system (RES) and afford Carvedilol delivery to the inflammatory environment with overproduced reactive oxygen species (ROS), further prolonging its circulation and accumulation. Sustainably released Carvedilol produced anti-inflammatory, antioxidant and anti-apoptosis effects, combining local M2-type cell membranes (M2-CM) inhibited pro-inflammatory cytokines and ROS levels, which in turn promoted and amplified M1 to M2 phenotype polarization efficiency. This study offers new insights into the rational design of biomimetic nanosystems for safe and effective ALF therapy to accelerate the clinical translation.
Stravitz, R. T.; Lee, W. M. Acute liver failure. Lancet 2019, 394, 869–881.
Tujios, S.; Stravitz, R. T.; Lee, W. M. Management of acute liver failure: Update 2022. Semin. Liver Dis. 2022, 42, 362–378.
Triantafyllou, E.; Woollard, K. J.; McPhail, M. J. W.; Antoniades, C. G.; Possamai, L. A. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front. Immunol. 2018, 9, 2948.
Chung, R. T.; Stravitz, R. T.; Fontana, R. J.; Schiodt, F. V.; Mehal, W. Z.; Reddy, K. R.; Lee, W. M. Pathogenesis of liver injury in acute liver failure. Gastroenterology 2012, 143, e1–e7.
Shubin, N. J.; Monaghan, S. F.; Ayala, A. Anti-inflammatory mechanisms of sepsis. Contrib. Microbiol. 2011, 17, 108–124.
Mihm, S. Danger-associated molecular patterns (DAMPs): Molecular triggers for sterile inflammation in the liver. Int. J. Mol. Sci. 2018, 19, 3104.
van Golen, R. F.; Reiniers, M. J.; Olthof, P. B.; van Gulik, T. M.; Heger, M. Sterile inflammation in hepatic ischemia/reperfusion injury: Present concepts and potential therapeutics. J. Gastroenterol. Hepatol. 2013, 28, 394–400.
Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247.
Harrison, P. M.; Wendon, J. A.; Gimson, A. E. S.; Alexander, G. J. M.; Williams, R. Improvement by acetylcysteine of hemodynamics and oxygen transport in fulminant hepatic failure. N. Engl. J. Med. 1991, 324, 1852–1857.
Wendon, J. A.; Harrison, P. M.; Keays, R.; Williams, R. Cerebral blood flow and metabolism in fulminant liver failure. Hepatology 1994, 19, 1407–1413.
Lee, W. M.; Hynan, L. S.; Rossaro, L.; Fontana, R. J.; Stravitz, R. T.; Larson, A. M.; Davern, II. T. J.; Murray, N. G.; McCashland, T.; Reisch, J. S. et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology 2009, 137, 856–864.e1.
Smilkstein, M. J.; Knapp, G. L.; Kulig, K. W.; Rumack, B. H. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. N. Engl. J. Med. 1988, 319, 1557–1562.
Bullinga, J. R.; Alharethi, R.; Schram, M. S.; Bristow, M. R.; Gilbert, E. M. Changes in heart rate variability are correlated to hemodynamic improvement with chronic CARVEDILOL therapy in heart failure. J. Card. Failure 2005, 11, 693–699.
Shaddy, R. E.; Boucek, M. M.; Hsu, D. T.; Boucek, R. J.; Canter, C. E.; Mahony, L.; Ross, R. D.; Pahl, E.; Blume, E. D.; Dodd, D. A. et al. Carvedilol for children and adolescents with heart failure: A randomized controlled trial. JAMA 2007, 298, 1171–1179.
Villanueva, C.; Torres, F.; Sarin, S. K.; Shah, H. A.; Tripathi, D.; Brujats, A.; Rodrigues, S. G.; Bhardwaj, A.; Azam, Z.; Hayes, P. C. et al. Carvedilol reduces the risk of decompensation and mortality in patients with compensated cirrhosis in a competing-risk meta-analysis. J. Hepatol. 2022, 77, 1014–1025.
Dandona, P.; Karne, R.; Ghanim, H.; Hamouda, W.; Aljada, A.; Magsino, C. H. Jr. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 2000, 101, 122–124.
Maggi, E.; Marchesi, E.; Covini, D.; Negro, C.; Perani, G.; Bellomo, G. Protective effects of carvedilol, a vasodilating β-adrenoceptor blocker, against in vivo low density lipoprotein oxidation in essential hypertension. J. Cardiovasc. Pharmacol. 1996, 27, 532–538.
Arumanayagam, M.; Chan, S.; Tong, S.; Sanderson, J. E. Antioxidant properties of carvedilol and metoprolol in heart failure: A double-blind randomized controlled trial. J. Cardiovasc. Pharmacol. 2001, 37, 48–54.
Yue, T. L.; Cheng, H. Y.; Lysko, P. G.; McKenna, P. J.; Feuerstein, R.; Gu, J. L.; Lysko, K. A.; Davis, L. L.; Feuerstein, G. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J. Pharmacol. Exp. Ther. 1992, 263, 92–98.
Yasunari, K.; Maeda, K.; Nakamura, M.; Watanabe, T.; Yoshikawa, J.; Asada, A. Effects of carvedilol on oxidative stress in polymorphonuclear and mononuclear cells in patients with essential hypertension. Am. J. Med. 2004, 116, 460–465.
El-Shitany, N. A.; El-Desoky, K. Protective effects of carvedilol and vitamin C against azithromycin-induced cardiotoxicity in rats via decreasing ROS, IL1- β, and TNF- α production and inhibiting NF- κB and caspase-3 expression. Oxid. Med. Cell. Longev. 2016, 2016, 1874762.
Amirshahrokhi, K.; Niapour, A. Carvedilol attenuates brain damage in mice with hepatic encephalopathy. Int. Immunopharmacol. 2022, 111, 109119.
Amirshahrokhi, K.; Khalili, A. R. Carvedilol attenuates paraquat-induced lung injury by inhibition of proinflammatory cytokines, chemokine MCP-1, NF-κB activation and oxidative stress mediators. Cytokine 2016, 88, 144–153.
Zhang, Y.; Li, M. C.; Wang, W. X.; He, S. Y. Carvedilol activates nuclear factor E2-related factor 2/ antioxidant response element pathway to inhibit oxidative stress and apoptosis of retinal pigment epithelial cells induced by high glucose. Bioengineered 2022, 13, 735–745.
de Araújo Júnior, R. F.; Garcia, V. B.; de Carvalho Leitão, R. F.; de Castro Brito, G. A.; de Castro Miguel, E.; Guedes, P. M. M.; de Araújo, A. A. Carvedilol improves inflammatory response, oxidative stress and fibrosis in the alcohol-induced liver injury in rats by regulating Kuppfer cells and hepatic stellate cells. PLoS One 2016, 11, e0148868.
Meng, D. X.; Li, Z.; Wang, G. C.; Ling, L. P.; Wu, Y.; Zhang, C. Q. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed. Pharmacother. 2018, 108, 1617–1627.
Wu, Y.; Li, Z.; Xiu, A. Y.; Meng, D. X.; Wang, S. N.; Zhang, C. Q. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des. Devel. Ther. 2019, 13, 2667–2676.
Lu, Q.; Zhou, Y.; Xu, M.; Liang, X. Y.; Jing, H. Q.; Wang, X. X.; Li, N. Sequential delivery for hepatic fibrosis treatment based on carvedilol loaded star-like nanozyme. J. Control. Release 2022, 341, 247–260.
El-Say, K. M.; Hosny, K. M. Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits. PLoS One 2018, 13, e0203405.
Xu, J. X.; Wang, J. X.; Qiu, J. H.; Liu, H.; Wang, Y.; Cui, Y. L.; Humphry, R.; Wang, N.; Durkan, C.; Chen, Y. K. et al. Nanoparticles retard immune cells recruitment in vivo by inhibiting chemokine expression. Biomaterials 2021, 265, 120392.
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
Bourquin, J.; Milosevic, A.; Hauser, D.; Lehner, R.; Blank, F.; Petri-Fink, A.; Rothen-rutishauser, B. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 2018, 30, 1704307.
Fang, R. H.; Jiang, Y.; Fang, J. C.; Zhang, L. F. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017, 128, 69–83.
Rao, L.; Bu, L. L.; Cai, B.; Xu, J. H.; Li, A.; Zhang, W. F.; Sun, Z. J.; Guo, S. S.; Liu, W.; Wang, T. H. et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 2016, 28, 3460–3466.
Wu, Y. S.; Wan, S. L.; Yang, S.; Hu, H. Y.; Zhang, C. X.; Lai, J.; Zhou, J. H.; Chen, W.; Tang, X. Q.; Luo, J. S. et al. Macrophage cell membrane-based nanoparticles: A new promising biomimetic platform for targeted delivery and treatment. J. Nanobiotechnology 2022, 20, 542.
Henn, D.; Zhao, D. H.; Sivaraj, D.; Trotsyuk, A.; Bonham, C. A.; Fischer, K. S.; Kehl, T.; Fehlmann, T.; Greco, A. H.; Kussie, H. C. et al. Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing. Nat. Commun. 2023, 14, 4729.
Wen, Y. K.; Lambrecht, J.; Ju, C.; Tacke, F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol. Immunol. 2021, 18, 45–56.
Nakagawa, H.; Maeda, S.; Hikiba, Y.; Ohmae, T.; Shibata, W.; Yanai, A.; Sakamoto, K.; Ogura, K.; Noguchi, T.; Karin, M. et al. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 2008, 135, 1311–1321.
Liu, Y. R.; Li, P.; Lu, J.; Xiong, W.; Oger, J.; Tetzlaff, W.; Cynader, M. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J. Immunol. 2008, 181, 1887–1897.
Mohapatra, A.; Rajendrakumar, S. K.; Chandrasekaran, G.; Revuri, V.; Sathiyamoorthy, P.; Lee, Y. K.; Lee, J. H.; Choi, S. Y.; Park, I. K. Biomineralized nanoscavenger abrogates proinflammatory macrophage polarization and induces neutrophil clearance through reverse migration during gouty arthritis. ACS Appl. Mater. Interfaces 2023, 15, 3812–3825.
Lastuvkova, H.; Nova, Z.; Hroch, M.; Alaei Faradonbeh, F.; Schreiberova, J.; Mokry, J.; Faistova, H.; Stefela, A.; Dusek, J.; Kucera, O. et al. Carvedilol impairs bile acid homeostasis in mice: Implication for nonalcoholic steatohepatitis. Toxicol .Sci. 2023, 196, 200–217.
Hassan, M. I.; Ali, F. E.; Shalkami, A. G. S. Role of TLR-4/IL-6/TNF-α, COX-II and eNOS/iNOS pathways in the impact of carvedilol against hepatic ischemia reperfusion injury. Hum. Exp. Toxicol. 2021, 40, 1362–1373.
Zhang, Q. L.; Yang, J. J.; Zhang, H. S. Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed. Pharmacother. 2019, 109, 71–83.
Zhang, J. W.; Jiang, P. Y.; Sheng, L.; Liu, Y. Y.; Liu, Y. X.; Li, M.; Tao, M.; Hu, L.; Wang, X. Y.; Yang, Y. J. et al. A novel mechanism of carvedilol efficacy for rosacea treatment: Toll-like receptor 2 inhibition in macrophages. Front. Immunol. 2021, 12, 609615.