AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Self-doping active sites in microbe-derived carbonaceous electrocatalysts for the oxygen reduction reaction performance

Xiaofeng Xiao1,2Xiaochun Tian1Junpeng Li1Fan Yang1Rui Bai1Feng Zhao1( )
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Various self-doping sites in microbe-derived carbonaceous materials synergistically enhance their catalytic activity for the oxygen reduction reaction, involving mono- or co-doping sites formed by oxygen (O), nitrogen (N), phosphorus (P), sulfur (S), and iron (Fe). By guiding the design of these doping sites in microbe-derived carbonaceous materials, it is possible to maximize their electrocatalytic activity and contribute to the development of more efficient and cost-effective carbonaceous electrocatalysts.

Abstract

Microorganisms are rich in heteroatoms, which can be self-doped to form active sites during pyrolysis and loaded on microbe-derived carbonaceous materials. In recent years, microbe-derived carbonaceous materials, characterized with abundant self-doping sites, have been continuously developed as cost-effective electrocatalysts for oxygen reduction reaction (ORR). To fully unlock the catalytic potential of microbe-derived carbonaceous materials, a comprehensive analysis of catalytic sites and mechanisms for ORR is essential. This paper provides a summary of the ORR catalytic performance of microbe-derived carbonaceous materials reported to date, with a specific focus on the self-doping sites introduced during their pyrolytic fabrication. It highlights the mono- or co-doping sites involving nonmetallic elements such as oxygen (O), nitrogen (N), phosphorus (P), and sulfur (S) atoms, as well as covers the doping of metallic iron (Fe) atoms with various coordination configurations in microbe-derived carbonaceous materials. Understanding the impact of these self-doping sites on ORR catalytic performance can guide the design of doping sites in microbe-derived carbonaceous materials. This approach has the potential to maximize electrocatalytic activity of microbe-derived carbonaceous materials and contributes to the development of more efficient and cost-effective carbonaceous electrocatalysts.

References

[1]

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

[2]

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

[3]

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

[4]

Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536–4563.

[5]

Deng, J.; Li, M. M.; Wang, Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion. Green Chem. 2016, 18, 4824–4854.

[6]

Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691.

[7]

Dessalle, A.; Quílez-Bermejo, J.; Fierro, V.; Xu, F. N.; Celzard, A. Recent progress in the development of efficient biomass-based ORR electrocatalysts. Carbon 2023, 203, 237–260.

[8]

Qi, Z. J.; Zhou, Y.; Guan, R. N.; Fu, Y. S.; Baek, J. B. Tuning the coordination environment of carbon-based single-atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv. Mater. 2023, 35, 2210575.

[9]

Hoang, V. C.; Gomes, V. G.; Dinh, K. N. Ni-and P-doped carbon from waste biomass: A sustainable multifunctional electrode for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochim. Acta 2019, 314, 49–60.

[10]

Cao, L. J.; Wang, X. L.; Yang, C.; Lu, J. J.; Shi, X. Y.; Zhu, H. W.; Liang, H. P. Highly active Fe/Pt single-atom bifunctional electrocatalysts on biomass-derived carbon. ACS Sustain. Chem. Eng. 2021, 9, 189–196.

[11]

Ma, L. L.; Hu, X.; Min, Y.; Zhang, X. Y.; Liu, W. J.; Lam, P. K. S.; Li, M. M. J.; Zeng, R. J.; Ye, R. Q. Microalgae-derived single-atom oxygen reduction catalysts for zinc-air batteries. Carbon 2023, 203, 827–834.

[12]

Jiao, C. L.; Xu, Z.; Shao, J. Z.; Xia, Y.; Tseng, J.; Ren, G. Y.; Zhang, N. J.; Liu, P. F.; Liu, C. X.; Li, G. S. et al. High-density atomic Fe-N4/C in tubular, biomass-derived, nitrogen-rich porous carbon as air-electrodes for flexible Zn-air batterie. Adv. Funct. Mater. 2023, 33, 2213897.

[13]

Zhou, H.; Hong, S.; Zhang, H.; Chen, Y. T.; Xu, H. H.; Wang, X. K.; Jiang, Z.; Chen, S. L.; Liu, Y. Toward biomass-based single-atom catalysts and plastics: Highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols. Appl. Catal. B: Environ. 2019, 256, 117767.

[14]

Xin, S. S.; Li, Y. F.; Guan, J.; Ma, B. R.; Zhang, C. L.; Ma, X. M.; Liu, W. J.; Xin, Y. J.; Gao, M. C. Electrocatalytic oxygen reduction to hydrogen peroxide through a biomass-derived nitrogen and oxygen self-doped porous carbon metal-free catalyst. J. Mater. Chem. A 2021, 9, 25136–25149.

[15]

Kim, J.; Park, J.; Lee, J.; Lim, W. G.; Jo, C.; Lee, J. Biomass-derived P, N self-doped hard carbon as bifunctional oxygen electrocatalyst and anode material for seawater batteries. Adv. Funct. Mater. 2021, 31, 2010882.

[16]

Bar-On, Y. M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511.

[17]

Liu, J.; Sun, X. J.; Song, P.; Zhang, Y. W.; Xing, W.; Xu, W. L. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron. Adv. Mater. 2013, 25, 6879–6883.

[18]

Wang, L.; Ambrosi, A.; Pumera, M. “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities. Angew. Chem. 2013, 125, 14063–14066

[19]

Hu, J. W.; Liu, W.; Xin, C. C.; Guo, J. Y.; Cheng, X. S.; Wei, J. Z.; Hao, C.; Zhang, G. F.; Shi, Y. T. Carbon-based single atom catalysts for tailoring the ORR pathway: A concise review. J. Mater. Chem. A 2021, 9, 24803–24829.

[20]

Zhu, H.; Yin, J.; Wang, X. L.; Wang, H. Y.; Yang, X. R. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv. Funct. Mater. 2013, 23, 1305–1312.

[21]

Ma, X. X.; Lei, Z. C.; Feng, W. M.; Ye, Y. L.; Feng, C. H. Living Fe mineral@bacteria encrustation-derived and self-templated preparation of a mesoporous Fe-N-C electrocatalyst with high activity for oxygen reduction. Carbon 2017, 123, 481–491.

[22]

Ye, Y. L.; Duan, W. J.; Yi, X. Y.; Lei, Z. C.; Li, G.; Feng, C. H. Biogenic precursor to size-controlled synthesis of Fe2P nanoparticles in heteroatom-doped graphene-like carbons and their electrocatalytic reduction of oxygen. J. Power Sources 2019, 435, 226770.

[23]

Guo, Z. Y.; Ren, G. Y.; Jiang, C. C.; Lu, X. Y.; Zhu, Y.; Jiang, L.; Dai, L. M. High performance heteroatoms quaternary-doped carbon catalysts derived from Shewanella bacteria for oxygen reduction. Sci. Rep. 2015, 5, 17064.

[24]

Wang, X. W.; Ai, W.; Li, N.; Yu, T.; Chen, P. Graphene-bacteria composite for oxygen reduction and lithium ion batteries. J. Mater. Chem. A 2015, 3, 12873–12879.

[25]

Wei, L.; Yu, D. S.; Karahan, H. E.; Birer, Ö.; Goh, K.; Yuan, Y.; Jiang, W. C.; Liang, W.; Chen, Y. E. coli-derived carbon with nitrogen and phosphorus dual functionalities for oxygen reduction reaction. Catal. Today 2015, 249, 228–235

[26]

Guo, X. M.; Qian, C.; Wan, X. H.; Zhang, W.; Zhu, H. W.; Zhang, J. H.; Yang, H. X.; Lin, S. L.; Kong, Q. H.; Fan, T. X. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale 2020, 12, 4374–4382.

[27]

Liu, F. F.; Liu, L. N.; Li, X. H.; Zeng, J. H.; Du, L.; Liao, S. J. Nitrogen self-doped carbon nanoparticles derived from spiral seaweeds for oxygen reduction reaction. RSC Adv. 2016, 6, 27535–27541.

[28]

Lei, Y.; Yang, F. W.; Xie, H. M.; Lei, Y. P.; Liu, X. Y.; Si, Y. J.; Wang, H. H. Biomass in situ conversion to Fe single atomic sites coupled with Fe2O3 clusters embedded in porous carbons for the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 20629–20636.

[29]

Hao, M. G.; Dun, R. M.; Su, Y. M.; He, L.; Ning, F. D.; Zhou, X. C.; Li, W. M. In situ self-doped biomass-derived porous carbon as an excellent oxygen reduction electrocatalyst for fuel cells and metal-air batteries. J. Mater. Chem. A 2021, 9, 14331–14343.

[30]

Yu, Y. N.; Wang, M. Q.; Bao, S. J. Biomass-derived synthesis of nitrogen and phosphorus Co-doped mesoporous carbon spheres as catalysts for oxygen reduction reaction. J. Solid State Electrochem. 2017, 21, 103–110.

[31]

Wang, G. H.; Peng, H. L.; Qiao, X. C.; Du, L.; Li, X. H.; Shu, T.; Liao, S. J. Biomass-derived porous heteroatom-doped carbon spheres as a high-performance catalyst for the oxygen reduction reaction. Int. J. Hydrogen Energy 2016, 41, 14101–14110.

[32]

Zheng, X. J.; Cao, X. C.; Wu, J.; Tian, J. H.; Jin, C.; Yang, R. Z. Yolk–shell N/P/B ternary-doped biocarbon derived from yeast cells for enhanced oxygen reduction reaction. Carbon 2016, 107, 907–916.

[33]

Guo, C. Z.; Liao, W. L.; Li, Z. B.; Sun, L. T.; Chen, C. G. Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction. Nanoscale 2015, 7, 15990–15998.

[34]

Wang, X. L.; Du, J.; Zhang, Q. H.; Gu, L.; Cao, L. J.; Liang, H. P. In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. Carbon 2020, 157, 614–621

[35]

Lv, X. H.; Chen, Y. L.; Wu, Y. L.; Wang, H. Y.; Wang, X. L.; Wei, C. Y.; Xiao, Z. X.; Yang, G. W.; Jiang, J. Z. A Br-regulated transition metal active-site anchoring and exposure strategy in biomass-derived carbon nanosheets for obtaining robust ORR/HER electrocatalysts at all pH values. J. Mater. Chem. A 2019, 7, 27089–27098.

[36]

Lv, X. H.; Xiao, Z. X.; Wang, H. Y.; Wang, X. L.; Shan, L. L.; Wang, F. L.; Wei, C. Y.; Tang, X. J.; Chen, Y. L. In situ construction of Co/N/C-based heterojunction on biomass-derived hierarchical porous carbon with stable active sites using a Co-N protective strategy for high-efficiency ORR, OER and HER trifunctional electrocatalysts. J. Energy Chem. 2021, 54, 626–638

[37]

Miao, W. J.; Liu, W. F.; Ding, Y. C.; Guo, R. J.; Zhao, J.; Zhu, Y. Q.; Yu, H.; Zhu, Y. M. Cobalt (iron), nitrogen and carbon doped mushroom biochar for high-efficiency oxygen reduction in microbial fuel cell and Zn-air battery. J. Environ. Chem. Eng. 2022, 10, 108474.

[38]

Gao, S. Y.; Fan, H.; Zhang, S. X. Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. J. Mater. Chem. A 2014, 2, 18263–18270.

[39]

Wang, K. X.; Yang, J. T.; Liu, W. D.; Yang, H.; Yi, W. M.; Sun, Y. M.; Yang, G. X. Self-nitrogen-doped carbon materials derived from microalgae by lipid extraction pretreatment: Highly efficient catalyst for the oxygen reduction reaction. Sci. Total Environ. 2022, 821, 153155.

[40]

Hu, X.; Ma, L. L.; Liu, W. J.; Li, H. C.; Ma, M. M.; Yu, H. Q. Microalgae biomass-derived nitrogen-enriching carbon materials as an efficient pH-universal oxygen reduction electrocatalyst for Zn-air battery. Sci. Total Environ. 2021, 782, 146844.

[41]

Fan, Z. Y.; Li, J.; Zhou, Y.; Fu, Q.; Yang, W.; Zhu, X.; Liao, Q. A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells. Int. J. Hydrogen Energy 2017, 42, 27657–27665.

[42]

Yang, W.; Dong, Y. Y.; Li, J.; Fu, Q.; Zhang, L. Templating synthesis of hierarchically meso/macroporous N-doped microalgae derived biocarbon as oxygen reduction reaction catalyst for microbial fuel cells. Int. J. Hydrogen Energy 2021, 46, 2530–2542.

[43]

Deng, L. F.; Yuan, H. R.; Cai, X. X.; Ruan, Y. Y.; Zhou, S. G.; Chen, Y.; Yuan, Y. Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells. Int. J. Hydrogen Energy 2016, 41, 22328–22336.

[44]

Sun, G. L.; Reynolds, E. E.; Belcher, A. M. Using yeast to sustainably remediate and extract heavy metals from waste waters. Nat. Sustain. 2020, 3, 303–311.

[45]

Tabac, S.; Eisenberg, D. Pyrolyze this paper: Can biomass become a source for precise carbon electrodes. Curr. Opin. Electrochem. 2021, 25, 100638.

[46]

He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

[47]

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

[48]

Li, X. G.; Guan, B. Y.; Gao, S. Y.; Lou, X. W. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environ. Sci. 2019, 12, 648–655.

[49]

Xie, L.; Zhou, W.; Qu, Z. B.; Ding, Y. N.; Gao, J. H.; Sun, F.; Qin, Y. K. Understanding the activity origin of oxygen-doped carbon materials in catalyzing the two-electron oxygen reduction reaction towards hydrogen peroxide generation. J. Colloid Interface Sci. 2022, 610, 934–943.

[50]

Wu, K. H.; Wang, D.; Lu, X. Y.; Zhang, X. F.; Xie, Z. L.; Liu, Y. F.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants. Chem 2020, 6, 1443–1458.

[51]

Guo, Y.; Zhang, R.; Zhang, S. C.; Hong, H.; Zhao, Y. W.; Huang, Z. D.; Han, C. P.; Li, H. F.; Zhi, C. Y. Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction. Energy Environ. Sci. 2022, 15, 4167–4174.

[52]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[53]

Park, S.; Kim, J.; Kwon, K. A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications. Chem. Eng. J. 2022, 446, 137116.

[54]

Du, L.; Zhang, G. X.; Liu, X. H.; Hassanpour, A.; Dubois, M.; Tavares, A. C.; Sun, S. H. Biomass-derived nonprecious metal catalysts for oxygen reduction reaction: The demand-oriented engineering of active sites and structures. Carbon Energy 2020, 2, 561–581.

[55]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[56]

Li, L. Q.; Tang, C.; Zheng, Y.; Xia, B. Q.; Zhou, X. L.; Xu, H. L.; Qiao, S. Z. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 2020, 10, 2000789.

[57]

Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

[58]

Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by Co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

[59]

Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.

[60]

Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 7132–7135.

[61]

Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 1201–1204.

[62]

Wei, P.; Li, X. G.; He, Z. M.; Sun, X. P.; Liang, Q. R.; Wang, Z. Y.; Fang, C.; Li, Q.; Yang, H.; Han, J. T. et al. Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chem. Eng. J. 2021, 422, 130134.

[63]

Wang, H. M.; Wang, H. X.; Chen, Y.; Liu, Y. J.; Zhao, J. X.; Cai, Q. H.; Wang, X. Z. Phosphorus-doped graphene and (8, 0) carbon nanotube: Structural, electronic, magnetic properties, and chemical reactivity. Appl. Surf. Sci. 2013, 273, 302–309.

[64]

Zhang, X. L.; Lu, Z. S.; Fu, Z. M.; Tang, Y. A.; Ma, D. W.; Yang, Z. X. The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. J. Power Sources 2015, 276, 222–229.

[65]

Cruz-Silva, E.; López-Urías, F.; Muñoz-Sandoval, E.; Sumpter, B. G.; Terrones, H.; Charlier, J. C.; Meunier, V.; Terrones, M. Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes. ACS Nano 2009, 3, 1913–1921.

[66]

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

[67]

Meng, F. C.; Wang, S. W.; Jiang, B. H.; Ju, L.; Xie, H. J.; Jiang, W.; Ji, Q. M. Coordinated regulation of phosphorus/nitrogen doping in fullerene-derived hollow carbon spheres and their synergistic effect for the oxygen reduction reaction. Nanoscale 2022, 14, 10389–10398.

[68]

Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640.

[69]

Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211.

[70]

Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

[71]

Zhang, X. R.; Yao, S. X.; Chen, P. S.; Wang, Y. Q.; Lyu, D. D.; Yu, F.; Qing, M.; Tian, Z. Q.; Shen, P. K. Revealing the dependence of active site configuration of N doped and N, S-co-doped carbon nanospheres on six-membered heterocyclic precursors for oxygen reduction reaction. J. Catal. 2020, 389, 677–689.

[72]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[73]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[74]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[75]

Datye, A. K.; Xu, Q.; Kharas, K. C.; McCarty, J. M. Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism. Catal. Today 2006, 111, 59–67.

[76]

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

[77]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[78]

An, Z. D.; Yang, P. P.; Duan, D. L.; Li, J.; Wan, T.; Kong, Y.; Caratzoulas, S.; Xiang, S. T.; Liu, J. X.; Huang, L. et al. Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation. Nat. Commun. 2023, 14, 6666.

[79]

Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

[80]

Peng, L. S.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 2020, 10, 2003018.

[81]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[82]

Han, X.; Zhang, T. Y.; Chen, W. X.; Dong, B.; Meng, G.; Zheng, L. R.; Yang, C.; Sun, X. M.; Zhuang, Z. B.; Wang, D. S. et al. Mn-N4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 2021, 11, 2002753.

[83]

Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. E. Directly transforming copper(I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

[84]

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.

[85]

Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

[86]

Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

[87]

Yin, S. H.; Yang, S. L.; Li, G.; Li, G.; Zhang, B. W.; Wang, C. T.; Chen, M. S.; Liao, H. G.; Yang, J.; Jiang, Y. X. et al. Seizing gaseous Fe2+ to densify O2-accessible Fe-N4 sites for high-performance proton exchange membrane fuel cells. Energy Environ. Sci. 2022, 15, 3033–3040.

[88]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[89]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

[90]

Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

[91]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[92]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[93]

Li, X. H.; Yang, X. X.; Liu, L. T.; Zhao, H.; Li, Y. W.; Zhu, H. Y.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Tan, Q. et al. Chemical vapor deposition for N/S-doped single fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal. 2021, 11, 7450–7459.

[94]

Wang, M. R.; Yang, W. J.; Li, X. Z.; Xu, Y. S.; Zheng, L. R.; Su, C. L.; Liu, B. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 2021, 6, 379–386.

[95]

Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 2016, 9, 2418–2432.

[96]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[97]

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

[98]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[99]

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeN x species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

[100]

Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. 2019, 131, 15013–15018.

[101]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[102]

Xin, C. C.; Shang, W. Z.; Hu, J. W.; Zhu, C.; Guo, J. Y.; Zhang, J. W.; Dong, H. P.; Liu, W.; Shi, Y. T. Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 2022, 32, 2108345.

[103]

Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

[104]

Zhao, K. M.; Liu, S. Q.; Li, Y. Y.; Wei, X. L.; Ye, G. Y.; Zhu, W. W.; Su, Y. K.; Wang, J.; Liu, H. T.; He, Z. et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe-N4 sites for oxygen reduction reaction. Adv. Energy Mater. 2022, 12, 2103588.

[105]

Tan, X. H.; Li, H. P.; Zhang, W.; Jiang, K. R.; Zhai, S. L.; Zhang, W. Y.; Chen, N.; Li, H.; Li, Z. Square-pyramidal Fe-N4 with defect-modulated O-coordination: Two-tier electronic structure fine-tuning for enhanced oxygen reduction. Chem Catal. 2022, 2, 816–835.

[106]

Zhu, Y. P.; Li, J. J.; Chen, Y. B.; Zou, J.; Cheng, Q. Q.; Chen, C.; Hu, W. B.; Zou, L. L.; Zou, Z. Q.; Yang, B. et al. Switching the oxygen reduction reaction pathway via tailoring the electronic structure of FeN4/C catalysts. ACS Catal. 2021, 11, 13020–13027.

[107]

Peng, P.; Shi, L.; Huo, F.; Mi, C. X.; Wu, X. H.; Zhang, S. J.; Xiang, Z. H. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 2019, 5, eaaw2322.

[108]

Cao, P. K.; Quan, X.; Nie, X. W.; Zhao, K.; Liu, Y. M.; Chen, S.; Yu, H. T.; Chen, J. G. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 2023, 14, 172.

Nano Research
Pages 6803-6819
Cite this article:
Xiao X, Tian X, Li J, et al. Self-doping active sites in microbe-derived carbonaceous electrocatalysts for the oxygen reduction reaction performance. Nano Research, 2024, 17(8): 6803-6819. https://doi.org/10.1007/s12274-024-6597-2
Topics:

418

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 December 2023
Revised: 07 February 2024
Accepted: 28 February 2024
Published: 28 May 2024
© Tsinghua University Press 2024
Return