AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanoparticle delivery for central nervous system diseases and its clinical application

Lin TangRui ZhangYusi WangMohan LiuDie HuYuanda WangLi Yang( )
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
Show Author Information

Graphical Abstract

Nanoparticle drugs overcome blood-brain barrier barriers through a variety of different delivery routes to enhance the treatment of central nervous system diseases.

Abstract

In the treatment of central nervous system (CNS) diseases such as glioma, Alzheimer's disease (AD) and Parkinson's disease (PD), drugs are expected to reach specific areas of the brain to achieve the desired effect. Although a growing number of therapeutic targets have been identified in preclinical studies, the ones that can ultimately be used in the clinic are limited. Therefore, the research process and clinical application of drugs for treating CNS diseases are still large challenges. Physiological barriers such as the blood‒brain barrier (BBB) act as selective permeable membranes, allowing only certain molecules to enter the brain; this barrier is the major obstacle restricting the arrival of most drugs to brain lesions. Recently, nanoparticles, including lipid-based, cell-derived biomimetic, polymeric and inorganic nanoparticles, have gained increasing attention because of their ability to cross physiological barriers, and could play an important role as delivery carriers and immunomodulators. Additionally, clinical applications of nanoparticles in CNS diseases are underway. This review focuses on the progress of current research on the use of nanoparticles for the treatment of CNS diseases to provide additional insight into the treatment of CNS diseases.

References

[1]

Nance, E.; Pun, S. H.; Saigal, R.; Sellers, D. L. Drug delivery to the central nervous system. Nat. Rev. Mater. 2022, 7, 314–331.

[2]

Stupp, R.; Mason, W. P.; Van Den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J. B.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996.

[3]

Kasina, V.; Mownn, R. J.; Bahal, R.; Sartor, G. C. Nanoparticle delivery systems for substance use disorder. Neuropsychopharmacology 2022, 47, 1431–1439.

[4]

Pardridge, W. M. Drug targeting to the brain. Pharm. Res. 2007, 24, 1733–1744.

[5]

Pardridge, W. M. Molecular biology of the blood-brain barrier. Mol. Biotechnol. 2005, 30, 57–69.

[6]

Popovic, N.; Brundin, P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int. J. Pharm. 2006, 314, 120–126.

[7]

Aloe, L.; Luisa Rocco, M.; Omar Balzamino, B.; Micera, A. Nerve growth factor: A focus on neuroscience and therapy. Curr. Neuropharmacol. 2015, 13, 294–303.

[8]

Kuai, R.; Ochyl, L. J.; Bahjat, K. S.; Schwendeman, A.; Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 2017, 16, 489–496.

[9]

Silva, G. A. Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 2004, 61, 216–220.

[10]

Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg. 2010, 3, 32–33.

[11]

Chhabra, R.; Tosi, G.; Grabrucker, A. M. Emerging use of nanotechnology in the treatment of neurological disorders. Curr. Pharm. Des. 2015, 21, 3111–3130.

[12]

Wadhwa, G.; Krishna, K. V.; Dubey, S. K.; Taliyan, R. Development and validation of RP-HPLC method for quantification of repaglinide in mPEG-PCL polymeric nanoparticles: QbD-driven optimization, force degradation study, and assessment of in vitro release mathematic modeling. Microchem. J. 2021, 168, 106491.

[13]

Rufino-Ramos, D.; Albuquerque, P. R.; Carmona, V.; Perfeito, R.; Nobre, R. J.; de Almeida, L. P. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J. Control. Release 2017, 262, 247–258.

[14]

Sampson, J. H.; Maus, M. V.; June, C. H. Immunotherapy for brain tumors. J. Clin. Oncol. 2017, 35, 2450–2456.

[15]

de Robles, P.; Fiest, K. M.; Frolkis, A. D.; Pringsheim, T.; Atta, C.; St. Germaine-Smith, C.; Day, L.; Lam, D.; Jette, N. The worldwide incidence and prevalence of primary brain tumors: A systematic review and meta-analysis. Neuro Oncol. 2015, 17, 776–783.

[16]

Patel, A. P.; Tirosh, I.; Trombetta, J. J.; Shalek, A. K.; Gillespie, S. M.; Wakimoto, H.; Cahill, D. P.; Nahed, B. V.; Curry, W. T.; Martuza, R. L. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344, 1396–1401.

[17]

Hegde, M.; Corder, A.; Chow, K. K. H.; Mukherjee, M.; Ashoori, A.; Kew, Y.; Zhang, Y. J.; Baskin, D. S.; Merchant, F. A.; Brawley, V. S. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 2013, 21, 2087–2101.

[18]

Grada, Z.; Hegde, M.; Byrd, T.; Shaffer, D. R.; Ghazi, A.; Brawley, V. S.; Corder, A.; Schönfeld, K.; Koch, J.; Dotti, G. et al. TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol. Ther. Nucl. Acids 2013, 2, e105.

[19]
Chang, A. L.; Miska, J.; Wainwright, D. A.; Dey, M.; Rivetta, C. V.; Yu, D.; Kanojia, D.; Pituch, K. C.; Qiao, J.; Pytel, P. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 2016 , 76, 5671–5682.
[20]

Taliyan, R.; Kakoty, V.; Sarathlal, K. C.; Kharavtekar, S. S.; Karennanavar, C. R.; Choudhary, Y. K.; Singhvi, G.; Riadi, Y.; Dubey, S. K.; Kesharwani, P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J. Control. Release 2022, 343, 528–550.

[21]

Iturria-Medina, Y.; Sotero, R. C.; Toussaint, P. J.; Mateos-Pérez, J. M.; Evans, A. C.; The Alzheimer’s Disease Neuroimaging Initiative. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 2016, 7, 11934.

[22]

Ascherio, A.; Schwarzschild, M. A. The epidemiology of Parkinson's disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272.

[23]

Dauer, W.; Przedborski, S. Parkinson's disease: Mechanisms and models. Neuron 2003, 39, 889–909.

[24]

Spillantini, M. G.; Schmidt, M. L.; Lee, V. M. Y.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. α-Synuclein in Lewy bodies. Nature 1997, 388, 839–840.

[25]

Volles, M. J.; Lansbury, P. T. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 2002, 41, 4595–4602.

[26]

Roberts, H. L.; Brown, D. R. Seeking a mechanism for the toxicity of oligomeric α-synuclein. Biomolecules 2015, 5, 282–305.

[27]

Filippi, M., Bar-Or, A., Piehl, F., Preziosa, P., Solari, A., Vukusic, S., et al. Multiple sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43.

[28]

Zhang, S. S.; Zhou, Y.; Li, R. Q.; Chen, Z.; Fan, X. Advanced drug delivery system against ischemic stroke. J. Control. Release 2022, 344, 173–201.

[29]

Krishnamurthi, R. V.; Moran, A. E.; Forouzanfar, M. H.; Bennett, D. A.; Mensah, G. A.; Lawes, C. M. M.; Barker-Collo, S.; Connor, M.; Roth, G. A.; Sacco, R. et al. The global burden of hemorrhagic stroke: A summary of findings from the GBD 2010 study. Glob. Heart 2014, 9, 101–106.

[30]

Wasserman, J. K.; Schlichter, L. C. Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp. Neurol. 2007, 207, 227–237.

[31]

Zhou, C. M.; Yamaguchi, M.; Kusaka, G.; Schonholz, C.; Nanda, A.; Zhang, J. H. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2004, 24, 419–431.

[32]

Tang, J. P.; Liu, J.; Zhou, C. M.; Ostanin, D.; Grisham, M. B.; Neil Granger, D.; Zhang, J. H. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J. Neurochem. 2005, 94, 1342–1350.

[33]

The Hemorrhagic Stroke Academia Industry (HEADS) Roundtable Participants. Unmet needs and challenges in clinical research of intracerebral hemorrhage. Stroke 2018, 49, 1299–1307.

[34]

Cassidy, J. D.; Carroll, L. J.; Peloso, P. M.; Borg, J.; Von Holst, H.; Holm, L.; Kraus, J.; Coronado, V. G.; WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Incidence, risk factors and prevention of mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 2004, 36, 28–60.

[35]

Blennow, K.; Brody, D. L.; Kochanek, P. M.; Levin, H.; McKee, A.; Ribbers, G. M.; Yaffe, K.; Zetterberg, H. Traumatic brain injuries. Nat. Rev. Dis. Primers 2016, 2, 16084.

[36]

Smith, D. H.; Hicks, R.; Povlishock, J. T. Therapy development for diffuse axonal injury. J. Neurotraum. 2013, 30, 307–323.

[37]

Whiteneck, G. G.; Cuthbert, J. P.; Corrigan, J. D.; Bogner, J. A. Risk of negative outcomes after traumatic brain injury: A statewide population-based survey. J. Head Trauma Rehab. 2016, 31, E43–E54.

[38]

Gardner, R. C.; Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell. Neurosci. 2015, 66, 75–80.

[39]

Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S. P. Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci 2003, 6, 252–273.

[40]

Schwartz, S. Jr. Unmet needs in developing nanoparticles for precision medicine. Nanomedicine (Lond.) 2017, 12, 271–274.

[41]

von Roemeling, C.; Jiang, W.; Chan, C. K.; Weissman, I. L.; Kim, B. Y. S. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017, 35, 159–171.

[42]

Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M. H.; Wallgard, E.; Niaudet, C.; He, L. Q.; Norlin, J.; Lindblom, P.; Strittmatter, K. et al. Pericytes regulate the blood-brain barrier. Nature 2010, 468, 557–561.

[43]

Bell, R. D.; Winkler, E. A.; Sagare, A. P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B. V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68, 409–427.

[44]

Sweeney, M. D.; Ayyadurai, S.; Zlokovic, B. V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 2016, 19, 771–783.

[45]

Abbott, N. J.; Patabendige, A. A. K.; Dolman, D. E. M.; Yusof, S. R.; Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25.

[46]

Vanlandewijck, M.; He, L. Q.; Mäe, M. A.; Andrae, J.; Ando, K.; Del Gaudio, F.; Nahar, K.; Lebouvier, T.; Laviña, B.; Gouveia, L. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018, 554, 475–480.

[47]

Copeland, C.; Stabenfeldt, S. E. Leveraging the dynamic blood-brain barrier for central nervous system nanoparticle-based drug delivery applications. Curr. Opin. Biomed. Eng. 2020, 14, 1–8.

[48]

Ding, S. C.; Khan, A. I.; Cai, X. L.; Song, Y.; Lyu, Z. Y.; Du, D.; Dutta, P.; Lin, Y. H. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today (Kidlington) 2020, 37, 112–125.

[49]
Pandit, R.; Chen, L. Y.; Götz, J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 2020 , 165–166, 1–14.
[50]

Pinheiro, R. G. R.; Granja, A.; Loureiro, J. A.; Pereira, M. C.; Pinheiro, M.; Neves, A. R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer's disease. Eur. J. Pharm. Sci. 2020, 148, 105314.

[51]

Fernandes, F.; Dias-Teixeira, M.; Delerue-Matos, C.; Grosso, C. Critical review of lipid-based nanoparticles as carriers of neuroprotective drugs and extracts. Nanomaterials (Basel) 2021, 11, 563.

[52]

Pardridge, W. M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972.

[53]

Chen, Y.; Liu, L. H. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev . 2012, 64, 640–665.

[54]

Kou, L. F.; Bhutia, Y. D.; Yao, Q.; He, Z. G.; Sun, J.; Ganapathy, V. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol. 2018, 9, 27.

[55]

Johnsen, K. B.; Bak, M.; Melander, F.; Thomsen, M. S.; Burkhart, A.; Kempen, P. J.; Andresen, T. L.; Moos, T. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Release 2019, 295, 237–249.

[56]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[57]

Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani, S.; Zhang, Y. W.; Chen, Y. Y.; MacMillan, P.; Chan, W. C. W. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018, 12, 8423–8435.

[58]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

[59]

Scheetz, L.; Park, K. S.; Li, Q.; Lowenstein, P. R.; Castro, M. G.; Schwendeman, A.; Moon, J. J. Engineering patient-specific cancer immunotherapies. Nat. Biomed. Eng. 2019, 3, 768–782.

[60]

Ho, L. W. C.; Liu, Y.; Han, R. F.; Bai, Q. Q.; Choi, C. H. J. Nano-cell interactions of non-cationic bionanomaterials. Acc. Chem. Res. 2019, 52, 1519–1530.

[61]

Zhang, L.; Wang, Y.; Yang, D. J.; Huang, W. J.; Hao, P. Y.; Feng, S.; Appelhans, D.; Zhang, T. H.; Zan, X. J. Shape effect of nanoparticles on tumor penetration in monolayers versus spheroids. Mol. Pharm. 2019, 16, 2902–2911.

[62]

Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.) 2016, 11, 673–692.

[63]

Shang, L.; Nienhaus, K.; Nienhaus, G. U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 12, 5.

[64]

Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

[65]

Foroozandeh, P.; Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339.

[66]

Garbayo, E.; Ansorena, E.; Blanco-Prieto, M. J. Drug development in Parkinson's disease: From emerging molecules to innovative drug delivery systems. Maturitas 2013, 76, 272–278.

[67]

Lee Ventola, C. Progress in nanomedicine: Approved and investigational nanodrugs. P T 2017, 42, 742–755.

[68]

Li, Z.; Jiang, H.; Xu, C. M.; Gu, L. W. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids 2015, 43, 153–164.

[69]

Ross, K. A.; Brenza, T. M.; Binnebose, A. M.; Phanse, Y.; Kanthasamy, A. G.; Gendelman, H. E.; Salem, A. K.; Bartholomay, L. C.; Bellaire, B. H.; Narasimhan, B. Nano-enabled delivery of diverse payloads across complex biological barriers. J. Control. Release 2015, 219, 548–559.

[70]

Sabnis, S.; Kumarasinghe, E. S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J. J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J. et al. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 2018, 26, 1509–1519.

[71]

Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

[72]

Fonseca-Santos, B.; Gremião, M. P. D.; Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int. J. Nanomedicine 2015, 10, 4981–5003.

[73]

Jain, S.; Tripathi, S.; Tripathi, P. K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Delivery Sci. Technol. 2021, 61, 102166.

[74]

Chacko, I. A.; Ghate, V. M.; Dsouza, L.; Lewis, S. A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces 2020, 195, 111262.

[75]

Opatha, S. A. T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020, 12, 855.

[76]

Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Delivery Sci. Technol. 2020, 55, 101458.

[77]

Gettings, S. D.; Lordo, R. A.; Feder, P. I.; Hintze, K. L. A comparison of low volume, draize and in vitro eye irritation test data. II. Oil/water emulsions. Food Chem. Toxicol. 1998, 36, 47–59.

[78]

Venkateswarlu, V.; Reddy, P. R. Lipid microspheres as drug delivery systems. Indian J. Pharm. Sci. 2001, 63, 450–458.

[79]

Wang, Y. M.; Mesfin, G. M.; Rodríguez, C. A.; Slatter, J. G.; Schuette, M. R.; Cory, A. L.; Higgins, M. J. Venous irritation, pharmacokinetics, and tissue distribution of tirilazad in rats following intravenous administration of a novel supersaturated submicron lipid emulsion. Pharm. Res. 1999, 16, 930–938.

[80]

Maher, R.; Moreno-Borrallo, A.; Jindal, D.; Mai, B. T.; Ruiz-Hernandez, E.; Harkin, A. Intranasal polymeric and lipid-based nanocarriers for CNS drug delivery. Pharmaceutics 2023, 15, 746.

[81]

Prabhu, A.; Jose, J.; Kumar, L.; Salwa, S.; Vijay Kumar, M.; Nabavi, S. M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech 2022, 23, 49.

[82]

Vakilinezhad, M. A.; Amini, A.; Akbari Javar, H.; Baha'addini Beigi Zarandi, B. F.; Montaseri, H.; Dinarvand, R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer's disease animal model by reducing Tau hyperphosphorylation. Daru J. Pharm. Sci. 2018, 26, 165–177.

[83]

Yang, Z. Z.; Li, J. Q.; Wang, Z. Z.; Dong, D. W.; Qi, X. R. Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials 2014, 35, 5226–5239.

[84]

Gabizon, A.; Isacson, R.; Libson, E.; Kaufman, B.; Uziely, B.; Catane, R.; Ben-Dor, C. G.; Rabello, E.; Cass, Y.; Peretz, T. et al. Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol 1994, 33, 779–786.

[85]

Zheng, X. Y.; Shao, X. Y.; Zhang, C.; Tan, Y. Z.; Liu, Q. F.; Wan, X.; Zhang, Q. Z.; Xu, S. M.; Jiang, X. G. Intranasal H102 peptide-loaded liposomes for brain delivery to treat alzheimer's disease. Pharm. Res. 2015, 32, 3837–3849.

[86]

Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S. H.; Wu, L. P.; Moghimi, S. M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer's disease: Diagnosis, therapy, and safety issues. Nanomedicine 2011, 7, 521–540.

[87]

Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release 2002, 83, 273–286.

[88]

Budhian, A.; Siegel, S. J.; Winey, K. I. Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int. J. Pharm. 2008, 346, 151–159.

[89]

Iwasaki, Y.; Maie, H.; Akiyoshi, K. Cell-specific delivery of polymeric nanoparticles to carbohydrate-tagging cells. Biomacromolecules 2007, 8, 3162–3168.

[90]

Rathore, P.; Mahor, A.; Jain, S.; Haque, A.; Kesharwani, P. Formulation development, in vitro and in vivo evaluation of chitosan engineered nanoparticles for ocular delivery of insulin. RSC Adv. 2020, 10, 43629–43639.

[91]

Madamsetty, V. S.; Tavakol, S.; Moghassemi, S.; Dadashzadeh, A.; Schneible, J. D.; Fatemi, I.; Shirvani, A.; Zarrabi, A.; Azedi, F.; Dehshahri, A. et al. Chitosan: A versatile bio-platform for breast cancer theranostics. J. Control. Release 2022, 341, 733–752.

[92]

Brown, S. B.; Wang, L.; Jungels, R. R.; Sharma, B. Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomater. 2020, 101, 469–483.

[93]
He, C. B.; Yue, H. M.; Xu, L.; Liu, Y. F.; Song, Y. D.; Tang, C.; Yin, C. H. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 2020 , 103, 213–222.
[94]

Dubey, S. K.; Kali, M.; Hejmady, S.; Saha, R. N.; Alexander, A.; Kesharwani, P. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur. J. Pharm. Sci. 2021, 164, 105890.

[95]

Surekha, B.; Kommana, N. S.; Dubey, S. K.; Kumar, A. V. P.; Shukla, R.; Kesharwani, P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf. B Biointerfaces 2021, 204, 111837.

[96]

Kaur, H.; Kesharwani, P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J. Control. Release 2021, 337, 589–611.

[97]

Kesharwani, P.; Banerjee, S.; Gupta, U.; Amin, M. C. I. M.; Padhye, S.; Sarkar, F. H.; Iyer, A. K. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today 2015, 18, 565–572.

[98]

Sheikh, A.; Md, S.; Kesharwani, P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J. Control. Release 2021, 340, 221–242.

[99]

Yu, Y.; Jiang, X.; Gong, S.; Feng, L.; Zhong, Y.; Pang, Z. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin. Nanoscale 2014, 6, 3250–3258.

[100]

Bermudez, H.; Brannan, A. K.; Hammer, D. A.; Bates, F. S.; Discher, D. E. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 2002, 35, 8203–8208.

[101]

Discher, B. M.; Bermudez, H.; Hammer, D. A.; Discher, D. E.; Won, Y. Y.; Bates, F. S. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. J. Phys. Chem. B 2002, 106, 2848–2854.

[102]

Liu, X. Y.; Li, C.; Lv, J.; Huang, F.; An, Y. L.; Shi, L. Q.; Ma, R. J. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Appl. Bio Mater. 2020, 3, 1598–1606.

[103]

Misra, S.; Chopra, K.; Sinha, V. R.; Medhi, B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016, 23, 1434–1443.

[104]

Katila, N.; Duwa, R.; Bhurtel, S.; Khanal, S.; Maharjan, S.; Jeong, J. H.; Lee, S.; Choi, D. Y.; Yook, S. Enhancement of blood-brain barrier penetration and the neuroprotective effect of resveratrol. J. Control. Release 2022, 346, 1–19.

[105]

Casanova, Y.; Negro, S.; Slowing, K.; García-García, L.; Fernández-Carballido, A.; Rahmani, M.; Barcia, E. Micro- and nano-systems developed for tolcapone in Parkinson's disease. Pharmaceutics 2022, 14, 1080.

[106]

Ganipineni, L. P.; Ucakar, B.; Joudiou, N.; Bianco, J.; Danhier, P.; Zhao, M. N.; Bastiancich, C.; Gallez, B.; Danhier, F.; Préat, V. Magnetic targeting of paclitaxel-loaded poly(lactic- co-glycolic acid)-based nanoparticles for the treatment of glioblastoma. Int. J. Nanomedicine 2018, 13, 4509–4521.

[107]

Kulkarni, S. A.; Feng, S. S. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine (Lond.) 2011, 6, 377–394.

[108]

Geldenhuys, W.; Mbimba, T.; Bui, T.; Harrison, K.; Sutariya, V. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J. Drug Target. 2011, 19, 837–845.

[109]

Tosi, G.; Costantino, L.; Rivasi, F.; Ruozi, B.; Leo, E.; Vergoni, A. V.; Tacchi, R.; Bertolini, A.; Vandelli, M. A.; Forni, F. Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J. Control. Release 2007, 122, 1–9.

[110]

Rao, K. S.; Reddy, M. K.; Horning, J. L.; Labhasetwar, V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 2008, 29, 4429–4438.

[111]

Vio, V.; Marchant, M. J.; Araya, E.; Kogan, M. J. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr. Pharm. Des. 2017, 23, 1916–1926.

[112]

Zare, I.; Yaraki, M. T.; Speranza, G.; Najafabadi, A. H.; Shourangiz-Haghighi, A.; Nik, A. B.; Manshian, B. B.; Saraiva, C.; Soenen, S. J.; Kogan, M. J. et al. Gold nanostructures: Synthesis, properties, and neurological applications. Chem. Soc. Rev. 2022, 51, 2601–2680.

[113]

Yeh, Y. C.; Creran, B.; Rotello, V. M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880.

[114]

Yang, W. J.; Liang, H. Z.; Ma, S. H.; Wang, D.; Huang, J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain. Mater. Technol. 2019, 22, e00109.

[115]

Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387.

[116]

Li, Z. X.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41, 2590–2605.

[117]

Gao, X. H.; Yue, Q.; Liu, Z. N.; Ke, M. J.; Zhou, X. Y.; Li, S. H.; Zhang, J. P.; Zhang, R.; Chen, L.; Mao, Y. et al. Guiding brain-tumor surgery via blood-brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals. Adv. Mater. 2017, 29, 1603917.

[118]

Cheng, K. K.; Chan, P. S.; Fan, S. J.; Kwan, S. M.; Yeung, K. L.; Wáng, Y. X. J.; Chow, A. H. L.; Wu, E. X.; Baum, L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials 2015, 44, 155–172.

[119]

de la Torre, P.; Pérez-Lorenzo, M. J.; Alcázar-Garrido, Á.; Flores, A. I. Cell-based nanoparticles delivery systems for targeted cancer therapy: Lessons from anti-angiogenesis treatments. Molecules 2020, 25, 715.

[120]

Lv, W.; Liu, Y. J.; Li, S. N.; Lv, L. Y.; Lu, H. D.; Xin, H. L. Advances of nano drug delivery system for the theranostics of ischemic stroke. J. Nanobiotechnol. 2022, 20, 248.

[121]

Yang, J. L.; Zhang, X. F.; Chen, X. J.; Wang, L.; Yang, G. D. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 2017, 7, 278–287.

[122]

Kornblum, H. I. Introduction to neural stem cells. Stroke 2007, 38, 810–816.

[123]

Huang, B.; Jiang, X. C.; Zhang, T. Y.; Hu, Y. L.; Tabata, Y.; Chen, Z.; Pluchino, S.; Gao, J. Q. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int. J. Pharm. 2017, 531, 90–100.

[124]

Tang, Y. H.; Ma, Y. Y.; Zhang, Z. J.; Wang, Y. T.; Yang, G. Y. Opportunities and challenges: Stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci. Ther. 2015, 21, 337–347.

[125]

Gao, C. H.; Chu, X. Y.; Gong, W.; Zheng, J. P.; Xie, X. Y.; Wang, Y. L.; Yang, M. Y.; Li, Z. P.; Gao, C. S.; Yang, Y. RETRACTED ARTICLE: Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer's disease. J. Nanobiotechnol. 2020, 18, 71.

[126]

Khan, A. R.; Yang, X. Y.; Fu, M. F.; Zhai, G. X. Recent progress of drug nanoformulations targeting to brain. J. Control. Release 2018, 291, 37–64.

[127]

Campos-Bedolla, P.; Walter, F. R.; Veszelka, S.; Deli, M. A. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch. Med. Res. 2014, 45, 610–638.

[128]

Ohtsuki, S.; Terasaki, T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 2007, 24, 1745–1758.

[129]

Qu, B. Y.; Li, X. C.; Guan, M.; Li, X.; Hai, L.; Wu, Y. Design, synthesis and biological evaluation of multivalent glucosides with high affinity as ligands for brain targeting liposomes. Eur. J. Med. Chem. 2014, 72, 110–118.

[130]

Du, D.; Chang, N. D.; Sun, S. L.; Li, M. H.; Yu, H.; Liu, M. F.; Liu, X. Y.; Wang, G. T.; Li, H. C.; Liu, X. P. et al. The role of glucose transporters in the distribution of p-aminophenyl-α-D-mannopyranoside modified liposomes within mice brain. J. Control. Release 2014, 182, 99–110.

[131]

Gromnicova, R.; Davies, H. A.; Sreekanthreddy, P.; Romero, I. A.; Lund, T.; Roitt, I. M.; Phillips, J. B.; Male, D. K. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One 2013, 8, e81043.

[132]

Jiang, X. Y.; Xin, H. L.; Ren, Q. Y.; Gu, J. J.; Zhu, L. J.; Du, F. Y.; Feng, C. L.; Xie, Y. K.; Sha, X. Y.; Fang, X. L. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 2014, 35, 518–529.

[133]

Hervé, F.; Ghinea, N.; Scherrmann, J. M. CNS delivery via adsorptive transcytosis. AAPS J. 2008, 10, 455–472.

[134]

Bickel, U.; Yoshikawa, T.; Pardridge, W. M. Delivery of peptides and proteins through the blood-brain barrier. Adv. Drug Deliv. Rev. 2001, 46, 247–279.

[135]
Poduslo, J. F.; Ramakrishnan, M.; Holasek, S. S.; Ramirez-Alvarado, M.; Kandimalla, K. K.; Gilles, E. J.; Curran, G. L.; Wengenack, T. M. In vivo targeting of antibody fragments to the nervous system for Alzheimer's disease immunotherapy and molecular imaging of amyloid plaques. J. Neurochem. 2007 , 102, 420–433.
[136]

Poduslo, J. F.; Curran, G. L.; Gill, J. S. Putrescine-modified nerve growth factor: Bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J. Neurochem. 1998, 71, 1651–1660.

[137]

Drin, G.; Cottin, S.; Blanc, E.; Rees, A. R.; Temsamani, J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 2003, 278, 31192–31201.

[138]

Mazel, M.; Clair, P.; Rousselle, C.; Vidal, P.; Scherrmann, J. M.; Mathieu, D.; Temsamani, J. Doxorubicin-peptide conjugates overcome multidrug resistance. Anticancer Drugs 2001, 12, 107–116.

[139]

Guo, L. R.; Ren, J. F.; Jiang, X. G. Perspectives on brain-targeting drug delivery systems. Curr. Pharm. Biotechnol. 2012, 13, 2310–2318.

[140]

Pang, Z. Q.; Gao, H. L.; Yu, Y.; Chen, J.; Guo, L. R.; Ren, J. F.; Wen, Z. Y.; Su, J. H.; Jiang, X. G. Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes. Int. J. Pharm. 2011, 415, 284–292.

[141]

Fillebeen, C.; Descamps, L.; Dehouck, M. P.; Fenart, L.; Benaïssa, M.; Spik, G.; Cecchelli, R.; Pierce, A. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J. Biol. Chem. 1999, 274, 7011–7017.

[142]

Wang, Y. H.; Zhan, J.; Huang, J. Y.; Wang, X.; Chen, Z. H.; Yang, Z. M.; Li, J. Dynamic responsiveness of self-assembling peptide-based nano-drug systems. Interdiscip. Med. 2023, 1, e20220005.

[143]

Chung, E. P.; Cotter, J. D.; Prakapenka, A. V.; Cook, R. L.; DiPerna, D. M.; Sirianni, R. W. Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics 2020, 12, 93.

[144]

Kuplennik, N.; Lang, K.; Steinfeld, R.; Sosnik, A. Folate receptor α-modified nanoparticles for targeting of the central nervous system. ACS Appl. Mater. Interfaces 2019, 11, 39633–39647.

[145]

Patel, R. B.; Ye, M. Z.; Carlson, P. M.; Jaquish, A.; Zangl, L.; Ma, B.; Wang, Y. Y.; Arthur, I.; Xie, R. S.; Brown, R. J. et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater. 2019, 31, 1902626.

[146]

Liu, J. J.; Miao, L.; Sui, J. Y.; Hao, Y. Y.; Huang, G. H. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J. Pharm. Sci. 2020, 15, 576–590.

[147]

Moretti, A.; Ferrari, F.; Villa, R. F. Neuroprotection for ischaemic stroke: Current status and challenges. Pharmacol. Ther. 2015, 146, 23–34.

[148]

Chamorro, Á.; Lo, E. H.; Renú, A.; van Leyen, K.; Lyden, P. D. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry 2021, 92, 129–135.

[149]

Korshoj, L. E.; Shi, W.; Duan, B.; Kielian, T. The prospect of nanoparticle systems for modulating immune cell polarization during central nervous system infection. Front. Immunol. 2021, 12, 670931.

[150]

Xiao, L.; Wei, F.; Zhou, Y. H.; Anderson, G. J.; Frazer, D. M.; Lim, Y. C.; Liu, T. Q.; Xiao, Y. Dihydrolipoic acid-gold nanoclusters regulate microglial polarization and have the potential to alter neurogenesis. Nano Lett. 2020, 20, 478–495.

[151]

Zhu, F. D.; Hu, Y. J.; Yu, L.; Zhou, X. G.; Wu, J. M.; Tang, Y.; Qin, D. L.; Fan, Q. Z.; Wu, A. G. Nanoparticles: A hope for the treatment of inflammation in CNS. Front. Pharmacol. 2021, 12, 683935.

[152]

Pardridge, W. M. Why is the global CNS pharmaceutical market so under-penetrated. Drug Discovery Today 2002, 7, 5–7.

[153]

Buonerba, C.; Di Lorenzo, G.; Marinelli, A.; Federico, P.; Palmieri, G.; Imbimbo, M.; Conti, P.; Peluso, G.; De Placido, S.; Sampson, J. H. A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit. Rev. Oncol. Hematol. 2011, 80, 54–68.

[154]

Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 1994, 91, 2076–2080.

[155]

Bidros, D. S.; Liu, J. K.; Vogelbaum, M. A. Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol. 2010, 6, 117–125.

[156]

Chen, M. Y.; Lonser, R. R.; Morrison, P. F.; Governale, L. S.; Oldfield, E. H. Variables affecting convection-enhanced delivery to the striatum: A systematic examination of rate of infusion, cannula size, infusate concentration, and tissue—cannula sealing time. J. Neurosurg. 1999, 90, 315–320.

[157]

Zhan, W. B.; Wang, C. H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J. Control. Release 2018, 285, 212–229.

[158]

Zhang, C.; Nance, E. A.; Mastorakos, P.; Chisholm, J.; Berry, S.; Eberhart, C.; Tyler, B.; Brem, H.; Suk, J. S.; Hanes, J. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J. Control. Release 2017, 263, 112–119.

[159]

Papisov, M. I.; Belov, V. V.; Gannon, K. S. Physiology of the intrathecal bolus: The leptomeningeal route for macromolecule and particle delivery to CNS. Mol. Pharm. 2013, 10, 1522–1532.

[160]
Fowler, M. J.; Cotter, J. D.; Knight, B. E.; Sevick-Muraca, E. M.; Sandberg, D. I.; Sirianni, R. W. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 2020 , 165–166, 77–95.
[161]

Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018, 10, 116.

[162]

Upadhaya, P. G.; Pulakkat, S.; Patravale, V. B. Nose-to-brain delivery: Exploring newer domains for glioblastoma multiforme management. Drug Deliv. Transl. Res. 2020, 10, 1044–1056.

[163]

Lochhead, J. J.; Yang, J. Z.; Ronaldson, P. T.; Davis, T. P. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front. Physiol. 2020, 11, 914.

[164]

Su, Y.; Sun, B. X.; Gao, X. S.; Dong, X. Y.; Fu, L. B.; Zhang, Y. X.; Li, Z. L.; Wang, Y.; Jiang, H. Y.; Han, B. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front. Pharmacol. 2020, 11, 1165.

[165]
Craparo, E. F.; Musumeci, T.; Bonaccorso, A.; Pellitteri, R.; Romeo, A.; Naletova, I.; Cucci, L. M.; Cavallaro, G.; Satriano, C. mPEG-PLGA nanoparticles labelled with loaded or conjugated rhodamine-B for potential nose-to-brain delivery. Pharmaceutics 2021 , 13, 1508.
[166]

Jo, D. H.; Kim, J. H.; Lee, T. G.; Kim, J. H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015, 11, 1603–1611.

[167]

Betzer, O.; Shilo, M.; Opochinsky, R.; Barnoy, E.; Motiei, M.; Okun, E.; Yadid, G.; Popovtzer, R. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study. Nanomedicine (Lond.) 2017, 12, 1533–1546.

[168]

Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

[169]

Nowak, M.; Brown, T. D.; Graham, A.; Helgeson, M. E.; Mitragotri, S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med. 2020, 5, e10153.

[170]

Arnida; Janát-Amsbury, M. M.; Ray, A.; Peterson, C. M.; Ghandehari, H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm. 2011, 77, 417–423.

[171]

Hillaireau, H.; Couvreur, P. Nanocarriers' entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896.

[172]

Schipper, M. L.; Iyer, G.; Koh, A. L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L. A.; Li, J. Q.; Rao, J. Q. et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009, 5, 126–134.

[173]

Fytianos, K.; Chortarea, S.; Rodriguez-Lorenzo, L.; Blank, F.; von Garnier, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano 2017, 11, 375–383.

[174]

Kim, B.; Han, G.; Toley, B. J.; Kim, C. K.; Rotello, V. M.; Forbes, N. S. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat. Nanotechnol. 2010, 5, 465–472.

[175]

Lu, J. J.; Langer, R.; Chen, J. Z. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol. Pharm. 2009, 6, 763–771.

[176]

Dobrovolskaia, M. A.; Shurin, M.; Shvedova, A. A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 2016, 299, 78–89.

[177]

Zhang, L. Y.; Becton, M.; Wang, X. Q. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings. J. Phys. Chem. B 2015, 119, 3786–3794.

[178]

Sedighi, M.; Sieber, S.; Rahimi, F.; Shahbazi, M. A.; Rezayan, A. H.; Huwyler, J.; Witzigmann, D. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv. Transl. Res. 2019, 9, 404–413.

[179]
Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Nguyen, V. P.; Ali, L.; Pasricha, R.; Barrera, F. N.; Magzoub, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol. 2020 , 3, 95.
[180]

Liu, Y.; Yin, Y.; Wang, L. Y.; Zhang, W. F.; Chen, X. M.; Yang, X. X.; Xu, J. J.; Ma, G. H. Surface hydrophobicity of microparticles modulates adjuvanticity. J. Mater. Chem. B 2013, 1, 3888–3896.

[181]

Moyano, D. F.; Goldsmith, M.; Solfiell, D. J.; Landesman-Milo, D.; Miranda, O. R.; Peer, D.; Rotello, V. M. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 2012, 134, 3965–3967.

[182]

Zylberberg, C.; Gaskill, K.; Pasley, S.; Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017, 24, 441–452.

[183]

Xu, Y. N.; Fourniols, T.; Labrak, Y.; Préat, V.; Beloqui, A.; des Rieux, A. Surface modification of lipid-based nanoparticles. ACS Nano 2022, 16, 7168–7196.

[184]

Liu, Y.; An, S.; Li, J. F.; Kuang, Y. Y.; He, X.; Guo, Y. B.; Ma, H. J.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice. Biomaterials 2016, 80, 33–45.

[185]

Vergoni, A. V.; Tosi, G.; Tacchi, R.; Vandelli, M. A.; Bertolini, A.; Costantino, L. Nanoparticles as drug delivery agents specific for CNS: In vivo biodistribution. Nanomedicine 2009, 5, 369–377.

[186]

Li, S. D.; Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 5, 496–504.

[187]

Wiley, D. T.; Webster, P.; Gale, A.; Davis, M. E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl. Acad. Sci. USA 2013, 110, 8662–8667.

[188]

Cheng, X. W.; Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016, 99, 129–137.

[189]

Matsuno, J.; Kanamaru, T.; Arai, K.; Tanaka, R.; Lee, J. H.; Takahashi, R.; Sakurai, K.; Fujii, S. Synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles, and in vivo pharmacokinetics depending on the structural characteristics. J. Control. Release 2020, 324, 405–412.

[190]
Mueller, S.; Kline, C.; Villanueva-Meyer, J.; Hoffman, C.; Raber, S.; Bonner, E. R.; Nazarian, J.; Lundy, S.; Molinaro, A.; Prados, M. et al. DDRE-21. PNOC015: Phase 1 study of mtx110 delivered by convection enhanced delivery (CED) in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) previously treated with radiation therapy. Neuro Oncol. 2020 , 22, ii66.
[191]

Mitchell, D. A.; Xie, W. H.; Schmittling, R.; Learn, C.; Friedman, A.; McLendon, R. E.; Sampson, J. H. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol. 2008, 10, 10–18.

[192]

Mrugala, M. M.; Kim, B.; Sharma, A.; Johnson, N.; Graham, C.; Kurland, B. F.; Gralow, J. Phase II study of systemic high-dose methotrexate and intrathecal liposomal cytarabine for treatment of leptomeningeal carcinomatosis from breast cancer. Clin. Breast Cancer 2019, 19, 311–316.

[193]

Le Rhun, E.; Wallet, J.; Mailliez, A.; Le Deley, M. C.; Rodrigues, I.; Boulanger, T.; Lorgis, V.; Barrière, J.; Robin, Y. M.; Weller, M. et al. Intrathecal liposomal cytarabine plus systemic therapy versus systemic chemotherapy alone for newly diagnosed leptomeningeal metastasis from breast cancer. Neuro Oncol. 2020, 22, 524–538.

[194]

Keskin, O.; Bahar, I.; Jernigan, R. L.; Beutler, J. A.; Shoemaker, R. H.; Sausville, E. A.; Covell, D. G. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure. Anticancer Drug Des. 2000, 15, 79–98.

[195]

Fleming, A. B.; Saltzman, W. M. Pharmacokinetics of the carmustine implant. Clin. Pharmacokinet. 2002, 41, 403–419.

[196]

Brem, H.; Piantadosi, S.; Burger, P.; Walker, M.; Selker, R.; Vick, N. A.; Black, K.; Sisti, M.; Brem, S.; Mohr, G. et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995, 345, 1008–1012.

[197]

Verry, C.; Dufort, S.; Villa, J.; Gavard, M.; Iriart, C.; Grand, S.; Charles, J.; Chovelon, B.; Cracowski, J. L.; Quesada, J. L. et al. Theranostic AGuIX nanoparticles as radiosensitizer: A phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother Oncol 2021, 160, 159–165.

[198]

Vucic, S.; Kiernan, M. C.; Menon, P.; Huynh, W.; Rynders, A.; Ho, K. S.; Glanzman, R.; Hotchkin, M. T. Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open 2021, 11, e041479.

[199]

Petrou, P.; Kassis, I.; Levin, N.; Paul, F.; Backner, Y.; Benoliel, T.; Oertel, F. C.; Scheel, M.; Hallimi, M.; Yaghmour, N. et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain 2020, 143, 3574–3588.

[200]

Jaeger, L. B.; Dohgu, S.; Sultana, R.; Lynch, J. L.; Owen, J. B.; Erickson, M. A.; Shah, G. N.; Price, T. O.; Fleegal-Demotta, M. A.; Butterfiled, D. A. et al. Lipopolysaccharide alters the blood-brain barrier transport of amyloid β protein: A mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav. Immun. 2009, 23, 507–517.

[201]

Banks, W. A.; Gray, A. M.; Erickson, M. A.; Salameh, T. S.; Damodarasamy, M.; Sheibani, N.; Meabon, J. S.; Wing, E. E.; Morofuji, Y.; Cook, D. G. et al. Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J. Neuroinflammation 2015, 12, 223.

[202]

Horie, M.; Tabei, Y. Role of oxidative stress in nanoparticles toxicity. Free Radic. Res. 2021, 55, 331–342.

[203]

Yokel, R. A. Direct nose to the brain nanomedicine delivery presents a formidable challenge. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1767.

[204]

Landesman-Milo, D.; Peer, D. Altering the immune response with lipid-based nanoparticles. J. Control. Release 2012, 161, 600–608.

[205]

Tandrup Schmidt, S.; Foged, C.; Korsholm, K. S.; Rades, T.; Christensen, D. Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 2016, 8, 7.

Nano Research
Pages 6305-6322
Cite this article:
Tang L, Zhang R, Wang Y, et al. Nanoparticle delivery for central nervous system diseases and its clinical application. Nano Research, 2024, 17(7): 6305-6322. https://doi.org/10.1007/s12274-024-6598-1
Topics:

759

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 December 2023
Revised: 27 February 2024
Accepted: 28 February 2024
Published: 03 April 2024
© Tsinghua University Press 2024
Return