AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rapid synthesis of oxygen-defected molybdenum oxides quantum dots as efficient nanozymes for healing diabetic ulcers

Fangjun Cao1Hui Feng1Jiaxin Yao2,3Xiang Hou1Tiezhi Jin1Junfeng Hui2,3( )
Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710072, China
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
Show Author Information

Graphical Abstract

Ultrasmall oxygen-deficient MoO3−X quantum dots were fabricated and employed as nanoenzymes for healing fiabetic ulcers.

Abstract

The continuous inflammatory response in diabetic skin wounds leads to excessive production of reactive oxygen species, which cause a vicious circle of long-term inflammation. In the therapeutic research of metal nanoenzymes for healing diabetic ulcers, it still faces the challenges in poor nanoenzymes activity and low-efficient therapeutic efficiency. Herein, ultrasmall oxygen-deficient MoO3−X quantum dots were fabricated and employed as nanoenzymes for healing fiabetic ulcers. After PEGylation, PEGylated MoO3−X quantum dots (MoO3−X/PEG) with oxygen vacancies exhibits excellent photothermal, peroxidase/catalase-like activities. In addition, these MoO3−X/PEG showed superior properties in scavenging H2O2 and effectively inhibiting the scavenging of reactive oxygen species. More importantly, such an oxygen-defected MoO3−X/PEG had obvious antibacterial and skin repairing effects on alleviating hypoxia and excessive oxidative stress even in a mouse model of diabetic ulcers, inhibiting proinflammatory cytokines and significantly accelerating the healing of infected wounds, which shows great application potential for promoting wound healing. This work highlights that the developed oxygen defected molybdenum oxide compounds capable of peroxidase-like and catalase-like activities show great application potential for healing diabetes wound.

Electronic Supplementary Material

Download File(s)
6601_ESM.pdf (1.6 MB)

References

[1]

Chen, L. F.; Xing, S. H.; Lei, Y. L.; Chen, Q. S.; Zou, Z.; Quan, K.; Qing, Z. H.; Liu, J. W.; Yang, R. H. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew. Chem., Int. Ed. 2021, 60, 23534–23539.

[2]

Xu, Y.; Fu, X. H.; Chen F. Y. Epalrestat is effective in treating diabetic foot infection and can lower serum inflammatory factors in patients. Am. J. Transl. Res. 2023, 15, 6208–6216.

[3]

Xu, Z. J.; Liu, G. T.; Li, Q.; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res. 2022, 15, 5305–5315.

[4]

Chandio, I.; Ai, Y. J.; Wu, L.; Liang, Q. L. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2024, 17, 39–64.

[5]

Lu, Y. Z.; Jia, C. L.; Gong, C. C.; Wang, H.; Xiao, Q.; Guo, J. X.; Ni, D. L.; Xu, N. A hydrogel system containing molybdenum-based nanomaterials for wound healing. Nano Res. 2023, 16, 5368–5375.

[6]

Ni, J.; Zhou, H. L.; Gu, J. Y.; Liu, X. P.; Chen, J.; Yi, X.; Yang, K. Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer. Nano Res. 2022, 15, 7355–7365.

[7]

Qiu, F.; Fan, S. Y.; Diao, Y. P.; Liu, J.; Li, B.; Li, K.; Zhang, W. The mechanism of Chebulae Fructus Immaturus promote diabetic wound healing based on network pharmacology and experimental verification. J. Ethnopharmacol. 2024, 322, 117579.

[8]

Wang, H. N.; Xu, Z. J.; Zhao, M.; Liu, G. T.; Wu, J. Advances of hydrogel dressings in diabetic wounds. Biomater. Sci. 2021, 9, 1530–1546.

[9]

Shang, Y. X.; Liu, F. S.; Wang, Y. N.; Li, N.; Ding, B. Q. Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 2020, 21, 2408–2418.

[10]

Zhang, Y.; Khalique, A.; Du, X. C.; Gao, Z. X.; Wu, J.; Zhang, X. Y.; Zhang, R.; Sun, Z. Y.; Liu, Q. Q.; Xu, Z. L. et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 2021, 33, 2006570.

[11]

Du, X. C.; Jia, B. Q.; Wang, W. J.; Zhang, C. M.; Liu, X. D.; Qu, Y. Y.; Zhao, M. W.; Li, W. F.; Yang, Y. M.; Li, Y. Q. pH-switchable nanozyme cascade catalysis: A strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J. Nanobiotechnol. 2022, 20, 12.

[12]

Ezhilarasu, H.; Vishalli, D.; Dheen, S. T.; Bay, B. H.; Srinivasan, D. K. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials 2020, 10, 1234.

[13]

Zare, H.; Rezayi, M.; Aryan, E.; Meshkat, Z.; Hatamluyi, B.; Neshani, A.; Ghazvini, K.; Derakhshan, M.; Sankian, M. Nanotechnology-driven advances in the treatment of diabetic wounds. Biotechnol. Appl. Biochem. 2021, 68, 1281–1306.

[14]

Shan, J. Y.; Yang, K. L.; Xiu, W. J.; Qiu, Q.; Dai, S. L.; Yuwen, L. H.; Weng, L. X.; Teng, L. G.; Wang, L. H. Cu2MoS4 Nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small 2020, 16, 2001099.

[15]

Ren, C. X.; Li, D. D.; Zhou, Q. X.; Hu, X. G. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials 2020, 232, 119752.

[16]

Ma, D. Q.; Xie, C. J.; Wang, T.; Mei, L. Q.; Zhang, X.; Guo, Z.; Yin, W. Y. Liquid-phase exfoliation and functionalization of MoS2 nanosheets for effective antibacterial application. ChemBioChem 2020, 21, 2373–2380.

[17]

Li, K.; Li, D.; Li, C. H.; Zhuang, P. F.; Dai, C. M.; Hu, X. K.; Wang, D. H.; Liu, Y. Y.; Mei, X. F.; Rotello, V. M. Retracted article: Efficient in vivo wound healing using noble metal nanoclusters. Nanoscale 2021, 13, 6531–6537.

[18]

Wu, S. H.; Zhang, J. Y.; Wu, P. Photo-modulated nanozymes for biosensing and biomedical applications. Anal. Methods 2019, 11, 5081–5088.

[19]

Guo, X. R.; Wang, Y.; Wu, F. Y.; Ni, Y. N.; Kokot, S. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 2015, 140, 1119–1126.

[20]

Zhang, C.; Wang, H.; Yang, X. H.; Fu, Z.; Ji, X. R.; Shi, Y. F.; Zhong, J.; Hu, W. G.; Ye, Y. Q.; Wang, Z. T. et al. Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy. Sci. Adv. 2022, 8, eabp9882.

[21]

Duan, G. X.; Wen, L.; Sun, X. W.; Wei, Z. X.; Duan, R. X.; Zeng, J. F.; Cui, J. B.; Liu, C. Y.; Yu, Z. P.; Xie, X. F. et al. Healing diabetic ulcers with MoO3− x nanodots possessing intrinsic ROS-scavenging and bacteria-killing capacities. Small 2022, 18, 2107137.

[22]

Zu, H. R.; Guo, Y. X.; Yang, H. Y.; Huang, D.; Liu, Z. M.; Liu, Y. L.; Hu, C. F. Rapid room-temperature preparation of MoO3− x quantum dots by ultraviolet irradiation for photothermal treatment and glucose detection. New J. Chem. 2018, 42, 18533–18540.

[23]

Chen, Y.; Chen, T. M.; Wu, X. J.; Yang, G. W. Oxygen vacancy-engineered PEGylated MoO3− x nanoparticles with superior sulfite oxidase mimetic activity for vitamin B1 detection. Small 2019, 15, 1903153.

[24]

Han, Q. S.; Wang, X. H.; Liu, X. L.; Zhang, Y. F.; Cai, S. F.; Qi, C.; Wang, C.; Yang, R. MoO3− x nanodots with dual enzyme mimic activities as multifunctional modulators for amyloid assembly and neurotoxicity. J. Colloid Interface Sci. 2019, 539, 575–584.

[25]

Li, H.; Xu, Q.; Wang, X. Z.; Liu, W. Ultrasensitive surface-enhanced Raman spectroscopy detection based on amorphous molybdenum oxide quantum dots. Small 2018, 14, 1801523.

[26]

Smith, M. R.; Ozkan, U. S. The partial oxidation of methane to formaldehyde: Role of different crystal planes of MoO3. J. Catal. 1993, 141, 124–139.

[27]

Zhang, C.; Bu, W. B.; Ni, D. L.; Zuo, C. J.; Cheng, C.; Li, Q.; Zhang, L. L.; Wang, Z.; Shi, J. L. A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion. J. Am. Chem. Soc. 2016, 138, 8156–8164.

[28]

Zhong, S. C.; Xing, C. C.; Cao, A.; Zhang, T.; Li, X. J.; Yu, J.; Cai, W. P.; Li, Y. Ultra-fast synthesis of water soluble MoO3− x quantum dots with controlled oxygen vacancies and their near infrared fluorescence sensing to detect H2O2. Nanoscale Horiz. 2020, 5, 1538–1543.

[29]

Ding, D. D.; Guo, W.; Guo, C. S.; Sun, J. Z.; Zheng, N. N.; Wang, F.; Yan, M.; Liu, S. Q. MoO3− x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale 2017, 9, 2020–2029.

[30]

Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.

[31]

Zu, Y.; Yao, H. Q.; Wang, Y. F.; Yan, L.; Gu, Z. J.; Chen, C. Y.; Gao, L. Z.; Yin, W. Y. The age of bioinspired molybdenum-involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View 2021, 2, 20200188.

[32]

Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

[33]

Wang, S. Q.; Zheng, H.; Zhou, L.; Cheng, F.; Liu, Z.; Zhang, H. P.; Wang, L. L.; Zhang, Q. Y. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 2020, 20, 5149–5158.

[34]

Chen Z. Y., Song S., Zeng H. J., Ge Z. L., Liu B., Fan Z. J. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chen. Eng. J. 2023, 437, 144649

[35]

Ren, Q. J.; Sun, S.; Zhang, X. D. Redox-active nanoparticles for inflammatory bowel disease. Nano Res. 2021, 14, 2535–2557.

[36]

Wang, X. Y.; Wang, S. B.; Gao, J.; Yao, S. C.; Xu, T.; Zhao, Y. C.; Zhang, Z. Y.; Huang, T.; Yan, S.; Li, L. L. Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection. Nano Res. 2023, 16, 3991–3997.

[37]

Li, N.; Liu, W.; Zheng, X. Y.; Wang, Q.; Shen, L. X.; Hui, J. F.; Fan, D. D. Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Res. 2023, 16, 11139–11148.

[38]

Yao, J. L.; Hui, J. F.; Yang, J.; Yao, J. X.; Hu, C. Q.; Fan, D. D. Sprayable nanodrug-loaded hydrogels with enzyme-catalyzed semi-inter penetrating polymer network (semi-IPN) for solar dermatitis. Nano Res. 2022, 15, 6266–6277.

[39]

Lan, M.; Hou, M. Y.; Yan, J.; Deng, Q. R.; Zhao, Z. Y.; Lv, S. X.; Dang, J. J.; Yin, M. Y.; Ji, Y.; Yin, L. C. Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury. Nano Res. 2022, 15, 9125–9134.

[40]

Duan, G. X.; Chen, L.; Jing, Z. F.; De Luna, P.; Wen, L.; Zhang, L. L.; Zhao, L.; Xu, J. Y.; Li, Z.; Yang, Z. X. et al. Robust antibacterial activity of tungsten oxide (WO3− x ) nanodots. Chem. Res. Toxicol. 2019, 32, 1357–1366.

Nano Research
Pages 6376-6385
Cite this article:
Cao F, Feng H, Yao J, et al. Rapid synthesis of oxygen-defected molybdenum oxides quantum dots as efficient nanozymes for healing diabetic ulcers. Nano Research, 2024, 17(7): 6376-6385. https://doi.org/10.1007/s12274-024-6601-x
Topics:

540

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 05 February 2024
Revised: 28 February 2024
Accepted: 28 February 2024
Published: 15 March 2024
© Tsinghua University Press 2024
Return