Transparent photovoltaic devices (TPVDs) have attracted increasing attention in emerging electronic devices. As the application scenarios extend, there raise higher requirements regarding the stability and operating temperature range of TPVDs. In this work, a unique preparation strategy is proposed for air stable TPVD with a wide operating temperature range, i.e., a nanoscale architecture termed as H-TPVD is constructed that integrates a free-standing and highly transparent conductive hybrid film of graphene and single-walled carbon nanotubes (G-SWNT TCF for short) with a metal oxide NiO/TiO2 heterojunction. The preparation approach is suitable for scaling up. Thanks to the excellent transparent conductivity of the freestanding G-SWNT hybrid film and the ultrathin NiO/TiO2 heterojunction (100 nm), H-TPVD selectively absorbs the ultraviolet (UV) band of sunlight and has a transparency of up to 71% in the visible light. The integrated nanoscale architecture manifests the significant hole-collecting capability of the G-SWNT hybrid film and the efficient carrier generation and separation within the ultrathin NiO/TiO2 heterojunction, resulting in excellent performance of the H-TPVD with a specific detectivity of 2.7 × 1010 Jones. Especially, the freestanding G-SWNT TCF is a super stable and non-porous two-dimensional film that can insulate gas molecules, thereby protecting the surface properties of NiO/TiO2 heterojunctions and enhancing the stability of H-TPVD. Having subjected to 20,000 cycles and storage in air for three months, the performance parameters such as photo-response signal, output power, and specific detectivity show no noticeable degradation. In particular, the as-fabricated self-powered H-TPVD can operate over a wide temperature range from −180 to 300 °C, and can carry out solar-blind UV optical communication in this range. In addition, the 4 × 4 array H-TPVD demonstrates clear optical imaging. These results make it possible for H-TPVD to expand its potential application scenarios.
Park, S. M.; Wei, M. Y.; Xu, J.; Atapattu, H. R.; Eickemeyer, F. T.; Darabi, K.; Grater, L.; Yang, Y.; Liu, C.; Teale, S. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 2023, 381, 209–215.
Zhao, X. W.; Wu, Y. Z.; Xia, Z. Y.; Chang, S. L.; Shang, Y. Y.; Cao, A. Y. A GQD-based composite film as photon down-converter in CNT/Si solar cells. Nano Res. 2021, 14, 3893–3899.
Fang, H. J.; Zheng, C.; Wu, L. L.; Li, Y.; Cai, J.; Hu, M. X.; Fang, X. S.; Ma, R.; Wang, Q.; Wang, H. Solution-processed self-powered transparent ultraviolet photodetectors with ultrafast response speed for high-performance communication system. Adv. Funct. Mater. 2019, 29, 1809013.
Lien, M. B.; Liu, C. H.; Chun, I. Y.; Ravishankar, S.; Nien, H.; Zhou, M. M.; Fessler, J. A.; Zhong, Z. H.; Norris, T. B. Ranging and light field imaging with transparent photodetectors. Nat. Photon. 2020, 14, 143–148.
Li, B.; Zhu, Q. B.; Cui, C.; Liu, C.; Wang, Z. H.; Feng, S.; Sun, Y.; Zhu, H. L.; Su, X.; Zhao, Y. M. et al. Patterning of wafer-scale mxene films for high-performance image sensor arrays. Adv. Mater. 2022, 34, 2201298.
Wu, W. T.; Li, L. L.; Li, Z. X.; Sun, J. Z.; Wang, L. L. Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv. Mater. 2023, 35, 2304596.
Yan, Y. X.; Li, Z. X.; Li, L. L.; Lou, Z. Stereopsis-inspired 3D visual imaging system based on 2D ruddlesden-popper perovskite. Small 2023, 19, 2300831.
Li, L. L.; Xu, H.; Li, Z. X.; Liu, L. C.; Lou, Z.; Wang, L. L. CMOS-compatible tellurium/silicon ultra-fast near-infrared photodetector. Small 2023, 19, 2303114.
Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.
Andreani, L. C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X 2019, 4, 1548305.
Kamijo, T.; van Breemen, A. J. J. M.; Ma, X.; Shanmugam, S.; Bel, T.; de Haas, G.; Peeters, B.; Petre, R.; Tordera, D.; Verbeek, R. et al. A touchless user interface based on a near-infrared-sensitive transparent optical imager. Nat. Electron. 2023, 6, 451–461.
Mercier, G.; Polat, E. O.; Shi, S. T.; Gupta, S.; Konstantatos, G.; Goossens, S.; Koppens, F. H. L. Semitransparent image sensors for eye-tracking applications. ACS Photon. 2023, 10, 2994–3000.
Koh, T. M.; Wang, H.; Ng, Y. F.; Bruno, A.; Mhaisalkar, S.; Mathews, N. Halide perovskite solar cells for building integrated photovoltaics: Transforming building facades into power generators. Adv. Mater. 2022, 34, 2104661.
Rana, A. K.; Park, J. T.; Kim, J.; Wong, C. P. See-through metal oxide frameworks for transparent photovoltaics and broadband photodetectors. Nano Energy 2019, 64, 103952.
Bhatnagar, P.; Patel, M.; Lee, K.; Kim, J. Self-powered transparent photodetector for subretinal visual functions of wide-field-of-view and broadband perception. InfoMat 2023, 5, e12408.
Li, Q. T.; van de Groep, J.; Wang, Y. F.; Kik, P. G.; Brongersma, M. L. Transparent multispectral photodetectors mimicking the human visual system. Nat. Commun. 2019, 10, 4982.
Williams, J. P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E. The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment. Icarus 2017, 283, 300–325.
Vaillon, R.; Parola, S.; Lamnatou, C.; Chemisana, D. Solar cells operating under thermal stress. Cell Rep. Phys. Sci. 2020, 1, 100267.
Kumar, P.; Pfeffer, M.; Willsch, B.; Eibl, O.; Koduvelikulathu, L. J.; Mihailetchi, V. D.; Kopecek, R. N-type single-crystalline Si solar cells: Front side metallization for solar cells reaching 20% efficiency. Solar Energy Mater. Solar Cells 2016, 157, 200–208.
Mack, I.; Stuckelberger, J.; Wyss, P.; Nogay, G.; Jeangros, Q.; Horzel, J.; Allebé, C.; Despeisse, M.; Haug, F. J.; Ingenito, A. et al. Properties of mixed phase silicon-oxide-based passivating contacts for silicon solar cells. Solar Energy Mater. Solar Cells 2018, 181, 9–14.
Singh, P.; Ravindra, N. M. Temperature dependence of solar cell performance—An analysis. Solar Energy Mater. Solar Cells 2012, 101, 36–45.
Campesato, R.; Flores, C. Effects of low temperatures and intensities on GaAs and GaAs/Ge solar cells. IEEE Trans. Electron Devices 1991, 38, 1233–1237.
Perl, E. E.; Kuciauskas, D.; Simon, J.; Friedman, D. J.; Steiner, M. A. Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis. J. Appl. Phys. 2017, 122, 233102.
Leong, W. L.; Ooi, Z. E.; Sabba, D.; Yi, C. Y.; Zakeeruddin, S. M.; Graetzel, M.; Gordon, J. M.; Katz, E. A.; Mathews, N. Identifying fundamental limitations in halide perovskite solar cells. Adv. Mater. 2016, 28, 2439–2445.
Dunbar, R. B.; Moustafa, W.; Pascoe, A. R.; Jones, T. W.; Anderson, K. F.; Cheng, Y. B.; Fell, C. J.; Wilson, G. J. Device pre-conditioning and steady-state temperature dependence of CH3NH3PbI3 perovskite solar cells. Prog. Photovoltaics 2017, 25, 533–544.
Mauer, R.; Howard, I. A.; Laquai, F. Effect of nongeminate recombination on fill factor in polythiophene/methanofullerene organic solar cells. J. Phys. Chem. Lett. 2010, 1, 3500–3505.
Raga, S. R.; Fabregat-Santiago, F. Temperature effects in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 2328–2336.
Wu, M. H.; Ma, B.; Li, S. S.; Han, J. Q.; Zhao, W. C. Powering the future: A critical review of research progress in enhancing stability of high-efficiency organic solar cells. Adv. Funct. Mater. 2023, 33, 2305445.
Chen, S. H.; Weng, J.; Zhang, C. N.; Pan, B.; Huang, Y.; Dai, S. Y. Stability study of dye-sensitized solar cells under extreme temperature conditions. Acta Energiae Solaris Sin. 2016, 37, 3005–3008.
Zhang, H. C.; Li, Z. Y.; Qian, J.; Guan, Q. M.; Du, X. W.; Cui, Y. P.; Zhang, J. Y. Temperature-dependent photovoltaic characterization of a CdTe/CdSe nanocrystal's solar cell. Electron. Mater. Lett. 2014, 10, 433–437.
Bertoncello, M.; Casulli, F.; Barbato, M.; Artegiani, E.; Romeo, A.; Trivellin, N.; Zanoni, E.; Meneghini, M.; Meneghesso, G. Influence of CdTe solar cell properties on stability at high temperatures. Microelectron. Reliab. 2020, 114, 113847.
Nguyen, T. T.; Kumar, N.; Lee, J.; Patel, M.; Kim, J. All-transparent tandem photovoltaic-powered photodetector. Nano Energy 2023, 116, 108815.
Abbas, S.; Kumar, M.; Kim, J. All metal oxide-based transparent and flexible photodetector. Mater. Sci. Semicond. Process. 2018, 88, 86–92.
Li, M. J.; Wang, Z. L.; Jin, Y. H.; Yang, H. T.; Zhang, L. H.; Li, H. J.; Wang, J. P.; Fan, S. S.; Li, Q. Q. Highly efficient visible-blind ultraviolet photodetector based on scalably produced titanium dioxide nanowire arrays. Nano Lett. 2023, 23, 6059–6066.
Kawade, D.; Chichibu, S. F.; Sugiyama, M. Experimental determination of band offsets of NiO-based thin film heterojunctions. J. Appl. Phys. 2014, 116, 163108.
de Melo, C.; Jullien, M.; Battie, Y.; Naciri, A. E.; Ghanbaja, J.; Montaigne, F.; Pierson, J. F.; Rigoni, F.; Almqvist, N.; Vomiero, A. et al. Semi-transparent p-Cu2O/n-ZnO nanoscale-film heterojunctions for photodetection and photovoltaic applications. ACS Appl. Nano Mater. 2019, 2, 4358–4366.
Yu, Q.; Pan, J. Q.; Mei, J.; Chen, Z. F.; Wang, P. H.; Wang, P. P.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The Cu2O/CuO/SnO2 transparent pn junction film device towards photovoltaic enhancement with Cu2+ self-oxidation transition layer. J. Mater. Sci. 2021, 56, 5736–5747.
Abbas, S.; Kumar, M.; Kim, H. S.; Kim, J.; Lee, J. H. Silver-nanowire-embedded transparent metal-oxide heterojunction schottky photodetector. ACS Appl. Mater. Interfaces 2018, 10, 14292–14298.
Nguyen, T. T.; Murali, G.; Patel, M.; Park, S.; In, I.; Kim, J. MXene-integrated metal oxide transparent photovoltaics and self-powered photodetectors. ACS Appl. Energy Mater. 2022, 5, 7134–7143.
Abbas, S.; Kim, J. All-metal oxide transparent photodetector for broad responses. Sens. Actuators A: Phys. 2020, 303, 111835.
Farhadian Azizi, K.; Bagheri-Mohagheghi, M. M. Transition from anatase to rutile phase in titanium dioxide (TiO2) nanoparticles synthesized by complexing sol-gel process: Effect of kind of complexing agent and calcinating temperature. J. Sol-Gel Sci. Technol. 2013, 65, 329–335.
Viktorov, V. V.; Belaya, E. A.; Serikov, A. S. Phase transformations in the TiO2-NiO system. Inorg. Mater. 2012, 48, 488–493.
Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mater. 2012, 24, 5408–5427.
Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed NiO x selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988–5000.
Meyer, J.; Zilberberg, K.; Riedl, T.; Kahn, A. Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials. J. Appl. Phys. 2011, 110, 033710.
Meyer, J.; Shu, A.; Kröger, M.; Kahn, A. Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces. Appl. Phys. Lett. 2010, 96, 133308.
Soomro, R. A.; Zhang, P.; Fan, B. M.; Wei, Y.; Xu, B. Progression in the oxidation stability of MXenes. Nano-Micro Lett. 2023, 15, 108.
Celebi, K.; Buchheim, J.; Wyss, R. M.; Droudian, A.; Gasser, P.; Shorubalko, I.; Kye, J. I.; Lee, C.; Park, H. G. Ultimate permeation across atomically thin porous graphene. Science 2014, 344, 289–292.
Berry, V. Impermeability of graphene and its applications. Carbon 2013, 62, 1–10.
Zhao, M. Z.; Zhang, Z. B.; Shi, W. J.; Li, Y. W.; Xue, C. W.; Hu, Y. X.; Ding, M. C.; Zhang, Z. Q.; Liu, Z.; Fu, Y. et al. Enhanced copper anticorrosion from Janus-doped bilayer graphene. Nat. Commun. 2023, 14, 7447.
Lu, Q.; Zhong, H. T.; Sun, X. C.; Shang, M. P.; Liu, W. L.; Zhou, C. F.; Hu, Z. N.; Shi, Z. F.; Zhu, Y. Q.; Liu, X. T. et al. High moisture-barrier performance of double-layer graphene enabled by conformal and clean transfer. Nano Lett. 2023, 23, 7716–7724.
Zhang, Q.; Zhou, W. Y.; Xia, X. G.; Li, K. W.; Zhang, N.; Wang, Y. C.; Xiao, Z. J.; Fan, Q. X.; Kauppinen, E. I.; Xie, S. S. Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique. Adv. Mater. 2020, 32, 2004277.
Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L. F.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007, 7, 2307–2311.
Shi, E. Z.; Li, H. B.; Xu, W. J.; Wu, S. T.; Wei, J. Q.; Fang, Y.; Cao, A. Y. Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 2015, 17, 216–223.
Xiao, S. Q.; Fan, Q. X.; Xia, X. G.; Xiao, Z. J.; Chen, H. L.; Xi, W.; Chen, P. H.; Li, J. J.; Wang, Y. C.; Liu, H. P. et al. Dependence of the solar cell performance on nanocarbon/Si heterojunctions. Chin. Phys. B 2018, 27, 078801.
Shi, E. Z.; Li, H. B.; Yang, L.; Hou, J. F.; Li, Y. C.; Li, L.; Cao, A. Y.; Fang, Y. Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics. Adv. Mater. 2015, 27, 682–688.
Yan, Z.; Peng, Z. W.; Casillas, G.; Lin, J.; Xiang, C. S.; Zhou, H. Q.; Yang, Y.; Ruan, G. D.; Raji, A. R. O.; Samuel, E. L. G. et al. Rebar graphene. ACS Nano 2014, 8, 5061–5068.
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem. Mater. 2017, 29, 7633–7644.
Li, L. D.; Lou, Z.; Shen, G. Z. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Adv. Funct. Mater. 2018, 28, 1705389.
Zheng, Y. Q.; Wang, Y. W.; Li, Z. X.; Yuan, Z. Y.; Guo, S. Y.; Lou, Z.; Han, W.; Shen, G. Z.; Wang, L. L. MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention. Matter 2023, 6, 506–520.
Li, R.; Ma, X. Y.; Li, J. M.; Cao, J.; Gao, H. Z.; Li, T. S.; Zhang, X. Y.; Wang, L. C.; Zhang, Q. H.; Wang, G. et al. Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 2021, 12, 1587.
Nguyen, T. T.; Patel, M.; Kim, S.; Mir, R. A.; Yi, J.; Dao, V. A.; Kim, J. Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction. J. Power Sources 2021, 481, 228865.
Xue, Q. F.; Xia, R. X.; Brabec, C. J.; Yip, H. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy Environ. Sci. 2018, 11, 1688–1709.
Mujahid, M.; Chen, C.; Zhang, J.; Li, C. N.; Duan, Y. Recent advances in semitransparent perovskite solar cells. InfoMat 2021, 3, 101–124.
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.
Kim, H. S.; Yadav, P.; Patel, M.; Kim, J.; Pandey, K.; Lim, D.; Jeong, C. Transparent Cu4O3/ZnO heterojunction photoelectric devices. Superlattices Microstruct. 2017, 112, 262–268.
Bellia, L.; Bisegna, F.; Spada, G. Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions. Build. Environ. 2011, 46, 1984–1992.
Ghosh, A.; Mesloub, A.; Touahmia, M.; Ajmi, M. Visual comfort analysis of semi-transparent perovskite based building integrated photovoltaic window for hot desert climate (Riyadh, Saudi Arabia). Energies 2021, 14, 1043.
Yang, C. C.; Sheng, W.; Moemeni, M.; Bates, M.; Herrera, C. K.; Borhan, B.; Lunt, R. R. Ultraviolet and near-infrared dual-band selective-harvesting transparent luminescent solar concentrators. Adv. Energy Mater. 2021, 11, 2003581.
Lin, J.; Lai, M. L.; Dou, L. T.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J. L.; Lu, D.; Hawks, S. A.; Xie, C. L. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 2018, 17, 261–267.
Jin, X.; Tan, H. X.; Wu, Z. P.; Liang, J. C.; Miao, W. T.; Lian, C. S.; Wang, J. T.; Liu, K.; Wei, H. M.; Feng, C. et al. Continuous, ultra-lightweight, and multipurpose super-aligned carbon nanotube tapes viable over a wide range of temperatures. Nano Lett. 2019, 19, 6756–6764.
Zhu, M. G.; Lu, P.; Wang, X.; Chen, Q.; Zhu, H. P.; Zhang, Y. J.; Zhou, J. S.; Xu, H. T.; Han, Z. S.; Han, J. W. et al. Ultra-strong comprehensive radiation effect tolerance in carbon nanotube electronics. Small 2023, 19, 2204537.
Hugel, J.; Belkhir, M. Nature of the NiO absorption edge within a spin polarized band scheme. Solid State Commun. 1990, 73, 159–162.
Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 2013, 23, 2993–3001.