AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enzyme-activatable disk-shaped nanocarriers augment tumor permeability for breast cancer combination therapy

Hanming Zhang1Honglin Gao1Yicong Zhang1Yikun Han1Qing Lin1Tao Gong1Xun Sun1Zhirong Zhang1Ling Zhang2( )Shiqi Huang2( )
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
Show Author Information

Graphical Abstract

The current work designed a disc-shaped nano-system to co-deliver hydroxycamptothecin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. These disc-shaped nanoparticles can be triggered charge reversal under the catalytic hydrolysis at tumor sites, and then the transcellular transport of nanoparticles was enabled through endocytosis and transcytosis mechanism, with superior penetration capacity compared to ubiquitous spherical liposomes, ultimately possessing satisfactory anti-tumor therapeutic efficacy.

Abstract

Unique physiopathological characteristics of tumor tissues impose obstacles to the sufficient penetration of traditional nanomedicines, resulting in undesirable drug delivery efficacy and therapeutic outcomes. Here, we constructed TRAIL-[ND-HCPT]GAC, a synergistic hydroxycamptothecin (HCPT) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein co-loaded disk-shaped nanocarrier with γ-glutamyl transpeptidase responsiveness. When the novel nanodisks extravasated into the tumor interstitium, the γ-glutamyl transpeptidase overexpressed on the tumor cell membranes cleaved the γ-glutamyl portions of the nanodisk surface to produce positively charged amino groups. As a result, the cationic nanodisks possessed stronger tumor infiltration ability through transcytosis than anionic nanodisks. HCPT and TRAIL exerted synergistic antitumor effects with better overall therapeutic efficacy. This TRAIL-[ND-HCPT]GAC system performed significantly better than free HCPT and remarkably prolonged the survival of breast tumor-bearing mice with no significant toxicity.

Electronic Supplementary Material

Download File(s)
6608_ESM.pdf (952.2 KB)

References

[1]

Wang, R. B.; Billone, P. S.; Mullett, W. M. Nanomedicine in action: An overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater. 2013, 2013, 629681.

[2]

Min, Y. Z.; Caster, J. M.; Eblan, M. J.; Wang, A. Z. Clinical translation of nanomedicine. Chem. Rev. 2015, 115, 11147–11190.

[3]

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

[4]

Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013, 7, 7442–7447.

[5]

Leonard, R. C. F.; Williams, S.; Tulpule, A.; Levine, A. M.; Oliveros, S. Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (MyocetTM). Breast 2009, 18, 218–224.

[6]

Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

[7]

Minchinton, A. I.; Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592.

[8]

Heldin, C. H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure-an obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813.

[9]

Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160.

[10]

Miao, L.; Lin, C. M.; Huang, L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J. Control. Release 2015, 219, 192–204.

[11]

Kohli, A. G.; Kivimäe, S.; Tiffany, M. R.; Szoka, F. C. Improving the distribution of Doxil® in the tumor matrix by depletion of tumor hyaluronan. J. Control. Release 2014, 191, 105–114.

[12]

Wang, H. X.; Zuo, Z. Q.; Du, J. Z.; Wang, Y. C.; Sun, R.; Cao, Z. T.; Ye, X. D.; Wang, J. L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133–144.

[13]

Ma, M. C.; Chen, Y. F.; Zhao, M. D.; Sui, J.; Guo, Z. H.; Yang, Y. D.; Xu, Z. Y.; Sun, Y.; Fan, Y. J.; Zhang, X. D. Hierarchical responsive micelle facilitates intratumoral penetration by acid-activated positive charge surface and size contraction. Biomaterials 2021, 271, 120741.

[14]

Yim, H.; Park, S. J.; Bae, Y. H.; Na, K. Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials 2013, 34, 7674–7682.

[15]

Li, Z. M.; Gao, Y. W.; Li, W.; Li, Y. Y.; Lv, H.; Zhang, D.; Peng, J. W.; Cheng, W.; Mei, L.; Chen, H. Z. et al. Charge-reversal nanomedicines as a smart bullet for deep tumor penetration. Smart Mater. Med. 2022, 3, 243–253.

[16]

Jia, N.; Li, W. P.; Liu, D.; Wu, S. Y.; Song, B. H.; Ma, J. Z.; Chen, D. W.; Hu, H. Y. Tumor microenvironment stimuli-responsive nanoparticles for programmed anticancer drug delivery. Mol. Pharm. 2020, 17, 1516–1526.

[17]

Raza, A.; Rasheed, T.; Nabeel, F.; Hayat, U.; Bilal, M.; Iqbal, H. M. N. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019, 24, 1117.

[18]
Xie, P. W.; Liu, P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydr. Polym. 2020 , 236, 116093.
[19]

Dai, L. L.; Li, X.; Duan, X. L.; Li, M. H.; Niu, P. Y.; Xu, H. Y.; Cai, K. Y.; Yang, H. A pH/ROS cascade-responsive charge-reversal nanosystem with self-amplified drug release for synergistic oxidation-chemotherapy. Adv. Sci. 2019, 6, 1801807.

[20]

Rohani, N.; Hao, L. L.; Alexis, M. S.; Joughin, B. A.; Krismer, K.; Moufarrej, M. N.; Soltis, A. R.; Lauffenburger, D. A.; Yaffe, M. B.; Burge, C. B. et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 2019, 79, 1952–1966.

[21]

Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.

[22]

Choi, K. Y.; Swierczewska, M.; Lee, S.; Chen, X. Y. Protease-activated drug development. Theranostics 2012, 2, 156–178.

[23]

Castellano, I.; Merlino, A. γ-Glutamyltranspeptidases: Sequence, structure, biochemical properties, and biotechnological applications. Cell. Mol. Life Sci. 2012, 69, 3381–3394.

[24]

Luo, Z. L.; An, R. B.; Ye, D. J. Recent advances in the development of optical imaging probes for γ-glutamyltranspeptidase. ChemBioChem 2019, 20, 474–487.

[25]

Kunutsor, S. K.; Apekey, T. A.; Van Hemelrijck, M.; Calori, G.; Perseghin, G. Gamma glutamyltransferase, alanine aminotransferase and risk of cancer: Systematic review and meta-analysis. Int. J. Cancer 2015, 136, 1162–1170.

[26]

Chen, Y. K.; Wang, Z. Z.; Wang, X. F.; Su, M. L.; Xu, F.; Yang, L.; Jia, L. J.; Zhang, Z. X. Advances in antitumor nano-drug delivery systems of 10-hydroxycamptothecin. Int. J. Nanomed. 2022, 17, 4227–4259.

[27]

Zong, L. L.; Wang, H. Y.; Hou, X. Q.; Fu, L. K.; Wang, P. R.; Xu, H. L.; Yu, W. J.; Dai, Y. X.; Qiao, Y. H.; Wang, X. F. et al. A novel GSH-triggered polymeric nanomicelles for reversing MDR and enhancing antitumor efficiency of hydroxycamptothecin. Int. J. Pharm. 2021, 600, 120528.

[28]

Greco, F.; Vicent, M. J. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev. 2009, 61, 1203–1213.

[29]

Godsey, M. E.; Suryaprakash, S.; Leong, K. W. Materials innovation for co-delivery of diverse therapeutic cargos. RSC Adv. 2013, 3, 24794–24811.

[30]

He, C. L.; Tang, Z. H.; Tian, H. Y.; Chen, X. S. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Deliv. Rev. 2016, 98, 64–76.

[31]

Li, G. P.; Dong, S. L.; Qu, J. Y.; Sun, Z. G.; Huang, Z. Y.; Ye, L.; Liang, H. F.; Ai, X.; Zhang, W. G.; Chen, X. P. Synergism of hydroxyapatite nanoparticles and recombinant mutant human tumour necrosis factor-α in chemotherapy of multidrug-resistant hepatocellular carcinoma. Liver Int. 2010, 30, 585–592.

[32]

Zhou, T.; Tang, X.; Zhang, W.; Feng, J. F.; Wu, W. Preparation and in vitro and in vivo evaluations of 10-hydroxycamptothecin liposomes modified with stearyl glycyrrhetinate. Drug Deliv. 2019, 26, 673–679.

[33]

Guo, Y. F.; Zhao, Y. N.; Wang, T.; Li, R.; Han, M. H.; Dong, Z. Q.; Zhu, C. Y.; Wang, X. T. Hydroxycamptothecin nanorods prepared by fluorescently labeled oligoethylene glycols (OEG) codendrimer: Antitumor efficacy in vitro and in vivo. Bioconjug. Chem. 2017, 28, 390–399.

[34]

Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.

[35]

Venkataraman, S.; Hedrick, J. L.; Ong, Z. Y.; Yang, C.; Ee, P. L. R.; Hammond, P. T.; Yang, Y. Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 1228–1246.

[36]

Loverde, S. M.; Klein, M. L.; Discher, D. E. Nanoparticle shape improves delivery: Rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv. Mater. 2012, 24, 3823–3830.

[37]

Zeng, L. J.; Zou, L. L.; Yu, H. J.; He, X. Y.; Cao, H. Q.; Zhang, Z. W.; Yin, Q.; Zhang, P. C.; Gu, W. W.; Chen, L. L. et al. Treatment of malignant brain tumor by tumor-triggered programmed wormlike micelles with precise targeting and deep penetration. Adv. Funct. Mater. 2016, 26, 4201–4212.

[38]

Wang, H.; Wang, S. L.; Wang, R. F.; Wang, X. Y.; Jiang, K.; Xie, C.; Zhan, C. Y.; Wang, H.; Lu, W. Y. Co-delivery of paclitaxel and melittin by glycopeptide-modified lipodisks for synergistic anti-glioma therapy. Nanoscale 2019, 11, 13069–13077.

[39]

Zhang, W. P.; Sun, J.; Liu, Y.; Tao, M. Y.; Ai, X. Y.; Su, X. N.; Cai, C. F.; Tang, Y. L.; Feng, Z.; Yan, X. D. et al. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Mol. Pharm. 2014, 11, 3279–3290.

[40]

Huang, S. Q.; Deng, L.; Zhang, H. M.; Wang, L. Y.; Zhang, Y. C.; Lin, Q.; Gong, T.; Sun, X.; Zhang, Z. R.; Zhang, L. Co-delivery of TRAIL and paclitaxel by fibronectin-targeting liposomal nanodisk for effective lung melanoma metastasis treatment. Nano Res. 2022, 15, 728–737.

[41]

Huang, S. Q.; Zhang, Y. C.; Wang, L. Y.; Liu, W.; Xiao, L. Y.; Lin, Q.; Gong, T.; Sun, X.; He, Q.; Zhang, Z. R. et al. Improved melanoma suppression with target-delivered TRAIL and Paclitaxel by a multifunctional nanocarrier. J. Control. Release 2020, 325, 10–24.

[42]

Wang, G. W.; Zhou, Z. X.; Zhao, Z. H.; Li, Q. Y.; Wu, Y. L.; Yan, S.; Shen, Y. Q.; Huang, P. T. Enzyme-triggered transcytosis of dendrimer-drug conjugate for deep penetration into pancreatic tumors. ACS Nano 2020, 14, 4890–4904.

[43]

Martínez-Negro, M.; Russo, D.; Prévost, S.; Teixeira, J.; Morsbach, S.; Landfester, K. Poly(ethylene glycol)-based surfactant reduces the conformational change of adsorbed proteins on nanoparticles. Biomacromolecules 2022, 23, 4282–4288.

[44]

Tsumura, R.; Manabe, S.; Takashima, H.; Koga, Y.; Yasunaga, M.; Matsumura, Y. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. J. Control. Release 2018, 284, 49–56.

[45]

Pelaz, B.; Del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; De La fuente, J. M.; Nienhaus, G. U.; Parak, W. J. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano 2015, 9, 6996–7008.

[46]

LeBlanc, H. N.; Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003, 10, 66–75.

[47]
Srivastava, R. K. TRAIL/Apo-2L: Mechanisms and clinical applications in cancer. Neoplasia 2001 , 3, 535–546.
[48]

van Roosmalen, I. A.; Quax, W. J.; Kruyt, F. A. E. Two death-inducing human TRAIL receptors to target in cancer: Similar or distinct regulation and function. Biochem. Pharmacol. 2014, 91, 447–456.

[49]

Zhu, L.; Wang, X. X.; Li, X. M.; Yang, J. L. Mechanism of TRAIL induced tumor cell apoptosis and application of TRAIL based on tumor therapy. Acta Biophys. Sin. 2012, 28, 448–456.

[50]

Singh, T. R.; Shankar, S.; Chen, X. F.; Asim, M.; Srivastava, R. K. Srivastava. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res. 2003, 63, 5390–5400.

[51]

Teymouri, M.; Farzaneh, H.; Badiee, A.; Golmohammadzadeh, S.; Sadri, K.; Jaafari, M. R. Investigation of hexadecylphosphocholine (miltefosine) usage in Pegylated liposomal doxorubicin as a synergistic ingredient: In vitro and in vivo evaluation in mice bearing C26 colon carcinoma and B16F0 melanoma. Eur. J. Pharm. Sci. 2015, 80, 66–73.

[52]

Gao, Y. J.; Zhou, Y. X.; Zhao, L.; Zhang, C.; Li, Y. S.; Li, J. W.; Li, X. R.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 2015, 23, 127–135.

Nano Research
Pages 6400-6410
Cite this article:
Zhang H, Gao H, Zhang Y, et al. Enzyme-activatable disk-shaped nanocarriers augment tumor permeability for breast cancer combination therapy. Nano Research, 2024, 17(7): 6400-6410. https://doi.org/10.1007/s12274-024-6608-3
Topics:

701

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 December 2023
Revised: 04 March 2024
Accepted: 07 March 2024
Published: 04 April 2024
© Tsinghua University Press 2024
Return