Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Using the experimentally known aromatic icosahedral superatoms Ih B12H122− and D5d 1,12-C2B10H12 as building blocks and based on extensive density functional theory calculations, we predict herein a series of core–shell superpolyhedral boranes and carboranes in a bottom-up approach, including the high-symmetry Th B12@B152H722− (2), C2h C2B10@B152H72 (3), D3d B12@B144H66 (4), Ih B12@C24B120H722− (6), and D5d C2B10@C24B120H72 (7). More interestingly, the superatom-assembled linear D2h B36H322− (8), close-packed planar D3d B84H602− (10), and nearly close-packed core−shell D3d B12@B144H66 (4) can be extended periodically to form the one-dimensional (1D) α-rhombohedral borane nanowire B12H10 (Pmmm) (9), two-dimensional (2D) α-rhombohedral monolayer borophane B12H6 (P
Reber, A. C.; Khanna, S. N.; Castleman, A. W. Superatom compounds, clusters, and assemblies: Ultra alkali motifs and architectures. J. Am. Chem. Soc. 2007, 129, 10189–10194.
Castleman, A. W. Jr.; Khanna, S. N. Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C 2009, 113, 2664–2675.
Aikens, C. M. Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99–104.
Jia, Y. H.; Luo, Z. X. Thirteen-atom metal clusters for genetic materials. Coordinat. Chem. Rev. 2019, 400, 213053.
Sivaev, I. B.; Bregadze, V. I.; Sjöberg, S. Chemistry of closo-dodecaborate anion [B12H12]2-: A review. Collect. Czech. Chem. Commun. 2002, 67, 679–727.
Sivaev, I. B.; Stogniy, M. Y. Mercury derivatives of polyhedral boranes, carboranes, and metallacarboranes. Russ. Chem. Bull. 2019, 68, 217–253.
Chen, H.; Qiu, Y. Q.; Sun, S. L.; Liu, C. G.; Su, Z. M. Density functional theory study on the structures and stabilities of 14-vertex closo-carborane isomers. Acta Chim. Sin. 2007, 65, 305–309.
Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 1971, 792–793
Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863–867.
Albert, B.; Hillebrecht, H. Boron: Elementary challenge for experimenters and theoreticians. Angew. Chem., Int. Ed. 2009, 48, 8640–8668.
McCarty, L. V.; Kasper, J. S.; Horn, F. H.; Decker, B. F.; Newkirk, A. E. A new crystalline modification of boron. J. Am. Chem. Soc. 1958, 80, 2592.
Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.
Zubarev, D. Y.; Boldyrev, A. I. Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 2007, 28, 251–268.
Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. A concentric planar doubly π-aromatic B19− cluster. Nat. Chem. 2010, 2, 202–206.
Sergeeva, A. P.; Averkiev, B.; Zhai, H. J.; Boldyrev, A. I.; Wang, L. S. All-boron analogues of aromatic hydrocarbons: B17− and B18−. J. Chem. Phys. 2011, 134, 224304.
Romanescu, C.; Harding, D. J.; Fielicke, A.; Wang, L. S. Probing the structures of neutral boron clusters using infrared/vacuum ultraviolet two color ionization: B11, B16, and B17. J. Chem. Phys. 2012, 137, 014317.
Jalife, S.; Liu, L.; Pan, S.; Cabellos, J. L.; Osorio, E.; Lu, C.; Heine, T.; Donald, K. J.; Merino, G. Dynamical behavior of boron clusters. Nanoscale 2016, 8, 17639–17644.
Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.
Jian, T.; Chen, X. N.; Li, S. D.; Boldyrev, A. I.; Li, J.; Wang, L. S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 48, 3550–3591.
Wang, Y. J.; Zhao, Y. F.; Li, W. L.; Jian, T.; Chen, Q.; You, X. R.; Ou, T.; Zhao, X. Y.; Zhai, H. J.; Li, S. D.; Wang, L. S. Observation and characterization of the smallest borospherene, B28− and B28−. J. Chem. Phys. 2016, 144, 064307.
Chen, Q.; Li, W. L.; Zhao, Y. F.; Zhang, S. Y.; Hu, H. S.; Bai, H.; Li, H. R.; Tian, W. J.; Lu, H. G.; Zhai, H. J. et al. Experimental and theoretical evidence of an axially chiral borospherene. ACS nano 2015, 9, 754–760.
Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731.
Chen, W. J.; Ma, Y. Y.; Chen, T. T.; Ao, M. Z.; Yuan, D. F.; Chen, Q.; Tian, X. X.; Mu, Y. W.; Li, S. D.; Wang, L. S. B48−: A bilayer boron cluster. Nanoscale 2021, 13, 3868–3876
Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.
Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160.
Bhattacharya, D.; Klein, D. J.; Oliva, J. M.; Griffin, L. L.; Alcoba, D. R.; Massaccesi, G. E. Icosahedral symmetry super-carborane and beyond. Chem. Phys. Lett. 2014, 616, 16–19.
Klod, S.; Kleinpeter, E. Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—Application in conformational and configurational analysis. J. Chem. Soc. Perkin Trans. 2001, 2, 1893–1898.
Kleinpeter, E.; Klod, S.; Koch, A. Visualization of through space NMR shieldings of aromatic and anti-aromatic molecules and a simple means to compare and estimate aromaticity. J. Mol. Struct. THEOCHEM 2007, 811, 45–60.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.
VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.
Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.
Galeev, T. R.; Dunnington, B. D.; Schmidt, J. R.; Boldyrev, A. I. Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems. Phys. Chem. Chem. Phys. 2013, 15, 5022–5029.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.
Hubbard, F. H. Some electrical and optical properties of simple rhombohedral boron. J. Appl. Phys. 1959, 30, 1611–1612.