AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Superatom-assembled boranes, carboranes, and low-dimensional boron nanomaterials based on aromatic icosahedral B12 and C2B10

Qiao-Qiao YanYan-Fang WeiQiang Chen( )Yue-Wen Mu( )Si-Dian Li( )
Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
Show Author Information

Graphical Abstract

Extensive density functional theory investigations predict a series of superatom-assembled boranes and carboranes and one-dimensional (1D) borane nanowire B12H10, two-dimensional (2D) monolayer borophane B12H6, and three-dimensional (3D) α-rhombohedral boron in a bottom-up approach.

Abstract

Using the experimentally known aromatic icosahedral superatoms Ih B12H122− and D5d 1,12-C2B10H12 as building blocks and based on extensive density functional theory calculations, we predict herein a series of core–shell superpolyhedral boranes and carboranes in a bottom-up approach, including the high-symmetry Th B12@B152H722− (2), C2h C2B10@B152H72 (3), D3d B12@B144H66 (4), Ih B12@C24B120H722− (6), and D5d C2B10@C24B120H72 (7). More interestingly, the superatom-assembled linear D2h B36H322− (8), close-packed planar D3d B84H602− (10), and nearly close-packed core−shell D3d B12@B144H66 (4) can be extended periodically to form the one-dimensional (1D) α-rhombohedral borane nanowire B12H10 (Pmmm) (9), two-dimensional (2D) α-rhombohedral monolayer borophane B12H6 (P 3¯m1) (11), and the experimentally known three-dimensional (3D) α-rhombohedral boron (R 3¯m) (12) which can be viewed as an assembly of the monolayer B12H6 (11) staggered in vertical direction, setting up a bottom-up strategy to form low-dimensional boron-based nanomaterials from their borane “seeds” via partial or complete dehydrogenations. Detailed bonding analyses indicate that the high stability of these nanostructures originates from the spherical aromaticity of their icosahedral B12 or C2B10 structural units which possess the universal skeleton electronic configuration of 1S21P61D101F8 following the Wade’s n+1 rule. The infrared (IR) and Raman spectra of the most-concerned neutral B12@B144H66 (4) and C2B10@C24B120H72 (7) are computationally simulated to facilitate their experimental characterizations.

Electronic Supplementary Material

Download File(s)
6609_ESM.pdf (2.6 MB)

References

[1]

Reber, A. C.; Khanna, S. N.; Castleman, A. W. Superatom compounds, clusters, and assemblies: Ultra alkali motifs and architectures. J. Am. Chem. Soc. 2007, 129, 10189–10194.

[2]

Castleman, A. W. Jr.; Khanna, S. N. Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C 2009, 113, 2664–2675.

[3]

Aikens, C. M. Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99–104.

[4]

Jia, Y. H.; Luo, Z. X. Thirteen-atom metal clusters for genetic materials. Coordinat. Chem. Rev. 2019, 400, 213053.

[5]
Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, Wiley-Interscience, 6th ed. Wiley: New York, 1999.
[6]
Hosmane, N. S. Boron Science: New Technologies and Applications; CRC Press: Boca Raton, 2011.
[7]
Grimes, R. N. Carboranes, 3rd ed. Elsevier: Oxford, 2016.
[8]

Sivaev, I. B.; Bregadze, V. I.; Sjöberg, S. Chemistry of closo-dodecaborate anion [B12H12]2-: A review. Collect. Czech. Chem. Commun. 2002, 67, 679–727.

[9]

Sivaev, I. B.; Stogniy, M. Y. Mercury derivatives of polyhedral boranes, carboranes, and metallacarboranes. Russ. Chem. Bull. 2019, 68, 217–253.

[10]

Chen, H.; Qiu, Y. Q.; Sun, S. L.; Liu, C. G.; Su, Z. M. Density functional theory study on the structures and stabilities of 14-vertex closo-carborane isomers. Acta Chim. Sin. 2007, 65, 305–309.

[11]

Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 1971, 792–793

[12]

Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863–867.

[13]

Albert, B.; Hillebrecht, H. Boron: Elementary challenge for experimenters and theoreticians. Angew. Chem., Int. Ed. 2009, 48, 8640–8668.

[14]

McCarty, L. V.; Kasper, J. S.; Horn, F. H.; Decker, B. F.; Newkirk, A. E. A new crystalline modification of boron. J. Am. Chem. Soc. 1958, 80, 2592.

[15]

Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

[16]

Zubarev, D. Y.; Boldyrev, A. I. Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 2007, 28, 251–268.

[17]

Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. A concentric planar doubly π-aromatic B19 cluster. Nat. Chem. 2010, 2, 202–206.

[18]

Sergeeva, A. P.; Averkiev, B.; Zhai, H. J.; Boldyrev, A. I.; Wang, L. S. All-boron analogues of aromatic hydrocarbons: B17 and B18. J. Chem. Phys. 2011, 134, 224304.

[19]

Romanescu, C.; Harding, D. J.; Fielicke, A.; Wang, L. S. Probing the structures of neutral boron clusters using infrared/vacuum ultraviolet two color ionization: B11, B16, and B17. J. Chem. Phys. 2012, 137, 014317.

[20]

Jalife, S.; Liu, L.; Pan, S.; Cabellos, J. L.; Osorio, E.; Lu, C.; Heine, T.; Donald, K. J.; Merino, G. Dynamical behavior of boron clusters. Nanoscale 2016, 8, 17639–17644.

[21]

Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.

[22]

Jian, T.; Chen, X. N.; Li, S. D.; Boldyrev, A. I.; Li, J.; Wang, L. S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 48, 3550–3591.

[23]

Wang, Y. J.; Zhao, Y. F.; Li, W. L.; Jian, T.; Chen, Q.; You, X. R.; Ou, T.; Zhao, X. Y.; Zhai, H. J.; Li, S. D.; Wang, L. S. Observation and characterization of the smallest borospherene, B28 and B28. J. Chem. Phys. 2016, 144, 064307.

[24]

Chen, Q.; Li, W. L.; Zhao, Y. F.; Zhang, S. Y.; Hu, H. S.; Bai, H.; Li, H. R.; Tian, W. J.; Lu, H. G.; Zhai, H. J. et al. Experimental and theoretical evidence of an axially chiral borospherene. ACS nano 2015, 9, 754–760.

[25]

Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731.

[26]

Chen, W. J.; Ma, Y. Y.; Chen, T. T.; Ao, M. Z.; Yuan, D. F.; Chen, Q.; Tian, X. X.; Mu, Y. W.; Li, S. D.; Wang, L. S. B48: A bilayer boron cluster. Nanoscale 2021, 13, 3868–3876

[27]

Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

[28]

Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160.

[29]

Bhattacharya, D.; Klein, D. J.; Oliva, J. M.; Griffin, L. L.; Alcoba, D. R.; Massaccesi, G. E. Icosahedral symmetry super-carborane and beyond. Chem. Phys. Lett. 2014, 616, 16–19.

[30]

Klod, S.; Kleinpeter, E. Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—Application in conformational and configurational analysis. J. Chem. Soc. Perkin Trans. 2001, 2, 1893–1898.

[31]

Kleinpeter, E.; Klod, S.; Koch, A. Visualization of through space NMR shieldings of aromatic and anti-aromatic molecules and a simple means to compare and estimate aromaticity. J. Mol. Struct. THEOCHEM 2007, 811, 45–60.

[32]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[33]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[34]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[35]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[36]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[37]

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

[38]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

[39]

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

[40]

Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.

[41]

Galeev, T. R.; Dunnington, B. D.; Schmidt, J. R.; Boldyrev, A. I. Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems. Phys. Chem. Chem. Phys. 2013, 15, 5022–5029.

[42]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

[43]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16 (Revision B. 01); Gaussian, Inc.: Wallingford, 2016.
[44]

Hubbard, F. H. Some electrical and optical properties of simple rhombohedral boron. J. Appl. Phys. 1959, 30, 1611–1612.

Nano Research
Pages 6734-6740
Cite this article:
Yan Q-Q, Wei Y-F, Chen Q, et al. Superatom-assembled boranes, carboranes, and low-dimensional boron nanomaterials based on aromatic icosahedral B12 and C2B10. Nano Research, 2024, 17(7): 6734-6740. https://doi.org/10.1007/s12274-024-6609-2
Topics:

682

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 29 December 2023
Revised: 18 February 2024
Accepted: 29 February 2024
Published: 02 May 2024
© Tsinghua University Press 2024
Return