Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Fasn involved in the nephrotoxicity induced by polystyrene nanoplastics and the intervention of melatonin through intestinal microbiota-mediated lipid metabolism disorder

Huiwen Kang1Danyang Huang1Jiaru Jing1Wei Zhang1Lei Zhang1Jingyu Wang1Ziyan Liu1Lin Han1Ziyan Wang1Lefeng Zhang1Ai Gao1,2()
Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
Show Author Information

Graphical Abstract

View original image Download original image
80 nm polystyrene nanoplastics (PS-NPs) may cause kidney injury through intestinal flora mediated lipid metabolism disorder, and Desulfovibrionales-fatty acid synthase (Fasn)-docosahexaenoic acid (DHA) is a potential pathway for PS-NPs-induced kidney injury in mice. Melatonin alleviates nephrotoxicity induced by PS-NPs by regulating lipid metabolism disorders.

Abstract

Nanoplastics (NPs) can accumulate in the kidney and cause kidney injury, but the multi-organ interaction mechanism and preventive measures of kidney injury are still unclear. In this study, in vivo (60 μg/day, 42 days) and in vitro (0.4 μg/μL, 24 h) exposure models of polystyrene nanoplastics (PS-NPs, 80 nm) in mice and human kidney cortex proximal tubule epithelial cells (HK-2 cells) were established, respectively. Our study revealed that PS-NPs caused obvious pathological changes and impaired renal function in mice, which were related to lipid metabolism disorders mediated by intestinal flora. Desulfovibrionales-fatty acid synthase (Fasn)-docosahexaenoic acid (DHA) pathway may be one of the mechanisms of kidney injury in mice. Importantly, we also found that melatonin attenuates PS-NPs-induced nephrotoxicity by modulating lipid metabolism disorders (represented by DHA) and affects Fasn expression. In conclusion, our study revealed the important role of intestinal flora-mediated lipid metabolism in PS-NPs-induced nephrotoxicity and preliminarily provided potential key gene targets and effective preventive measures for PS-NPs-induced nephrotoxicity.

Electronic Supplementary Material

Download File(s)
6610_ESM.pdf (1.6 MB)

References

[1]

Shen, M. C.; Song, B.; Zeng, G. M.; Zhang, Y. X.; Huang, W.; Wen, X. F.; Tang, W. W. Are biodegradable plastics a promising solution to solve the global plastic pollution. Environ. Pollut. 2020, 263, 114469.

[2]

Turhan, D. Ö. Evaluation of microplastics in the surface water, sediment and fish of Sürgü Dam Reservoir (Malatya) in Turkey. Turk. J. Fish. Aquat. Sci. 2021, 22, TRJFAS20157.

[3]

Yao, Y.; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ. Res. 2022, 207, 112142.

[4]

Zhu, F. X.; Yan, Y. Y.; Doyle, E.; Zhu, C. Y.; Jin, X.; Chen, Z. H.; Wang, C.; He, H.; Zhou, D. M.; Gu, C. Microplastics altered soil microbiome and nitrogen cycling: The role of phthalate plasticizer. J. Hazard. Mater. 2022, 427, 127944.

[5]

Huang, D. L.; Wang, X. Y.; Yin, L. S.; Chen, S.; Tao, J. X.; Zhou, W.; Chen, H. J.; Zhang, G. X.; Xiao, R. H. Research progress of microplastics in soil–plant system: Ecological effects and potential risks. Sci. Total Environ. 2022, 812, 151487.

[6]

Zazouli, M.; Nejati, H.; Hashempour, Y.; Dehbandi, R.; Nam, V. T.; Fakhri, Y. Occurrence of microplastics (MPs) in the gastrointestinal tract of fishes: A global systematic review and meta-analysis and meta-regression. Sci. Total Environ. 2022, 815, 152743.

[7]

Zhang, N.; Li, Y. B.; He, H. R.; Zhang, J. F.; Ma, G. S. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci. Total Environ. 2021, 767, 144345.

[8]

Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med. 2019, 171, 453–457.

[9]

Huang, S. M.; Huang, X. X.; Bi, R.; Guo, Q. X.; Yu, X. L.; Zeng, Q. H.; Huang, Z. Y.; Liu, T. M.; Wu, H. S.; Chen, Y. L. et al. Detection and analysis of microplastics in human sputum. Environ. Sci. Technol. 2022, 56, 2476–2486.

[10]

Jenner, L. C.; Rotchell, J. M.; Bennett, R. T.; Cowen, M.; Tentzeris, V.; Sadofsky, L. R. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 2022, 831, 154907.

[11]

Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M. C. A.; Baiocco, F.; Draghi, S. et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274.

[12]

Leslie, H. A.; van Velzen, M. J. M.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199.

[13]

Wu, D.; Feng, Y. D.; Wang, R.; Jiang, J.; Guan, Q. Q.; Yang, X.; Wei, H. C.; Xia, Y. K.; Luo, Y. M. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence. J. Adv. Res. 2023, 49, 141–150.

[14]

Zhu, X. Q.; Wang, C. X.; Duan, X. Y.; Liang, B. X.; Xu, E. G.; Huang, Z. L. Micro- and nanoplastics: A new cardiovascular risk factor. Environ. Int. 2023, 171, 107662.

[15]

Liu, S.; Li, H.; Wang, J.; Wu, B.; Guo, X. C. Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance. Sci. Total Environ. 2022, 833, 155198.

[16]

Luo, T.; Weng, Y.; Huang, Z. Z.; Zhao, Y.; Jin, Y. X. Combined hepatotoxicity of imidacloprid and microplastics in adult zebrafish: Endpoints at gene transcription. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2021, 246, 109043.

[17]

Huang, J. N.; Wen, B.; Xu, L.; Ma, H. C.; Li, X. X.; Gao, J. Z.; Chen, Z. Z. Micro/nano-plastics cause neurobehavioral toxicity in discus fish ( Symphysodon aequifasciatus): Insight from brain–gut–microbiota axis. J. Hazard. Mater. 2022, 421, 126830.

[18]

Liu, Z. Q.; Zhuan, Q. R.; Zhang, L. Y.; Meng, L.; Fu, X. W.; Hou, Y. P. Polystyrene microplastics induced female reproductive toxicity in mice. J. Hazard. Mater. 2022, 424, 127629.

[19]

Meng, X. M.; Zhang, J. W.; Wang, W. J.; Gonzalez-Gil, G.; Vrouwenvelder, J. S.; Li, Z. Y. Effects of nano- and microplastics on kidney: Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere 2022, 288, 132631.

[20]

Sui, M. Y.; Lu, Y. J.; Wang, Q.; Hu, L. P.; Huang, X. T.; Liu, X. S. Distribution patterns of microplastics in various tissues of the Zhikong scallop ( Chlamys farreri) and in the surrounding culture seawater. Mar. Pollut. Bull. 2020, 160, 111595.

[21]

Prata, J. C.; Da Costa, J. P.; Duarte, A. C.; Rocha-Santos, T. Suspected microplastics in Atlantic horse mackerel fish ( Trachurus trachurus) captured in Portugal. Mar. Pollut. Bull. 2022, 174, 113249.

[22]

Zhang, Z.; Chen, W. Q.; Chan, H.; Peng, J. J.; Zhu, P. L.; Li, J. K.; Jiang, X. L.; Zhang, Z.; Wang, Y.; Tan, Z. C. et al. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. J. Hazard. Mater. 2024, 461, 132503.

[23]

Chen, Y. C.; Chen, K. F.; Lin, K. Y. A.; Chen, J. K.; Jiang, X. Y.; Lin, C. H. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations. J. Hazard. Mater. 2022, 427, 127871.

[24]

Wang, Y. L.; Lee, Y. H.; Hsu, Y. H.; Chiu, I. J.; Huang, C. C. Y.; Huang, C. C.; Chia, Z. C.; Lee, C. P.; Lin, Y. F.; Chiu, H. W. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice. Environ. Health Perspect. 2021, 129, 057003.

[25]

Lu, Y. P.; Zhang, Z. Y.; Wu, H. W.; Fang, L. J.; Hu, B.; Tang, C.; Zhang, Y. Q.; Yin, L. H.; Tang, D. E.; Zheng, Z. H. et al. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J. Transl. Med. 2022, 20, 420

[26]

Reiter, E. B.; Escher, B. I.; Siebert, U.; Jahnke, A. Activation of the xenobiotic metabolism and oxidative stress response by mixtures of organic pollutants extracted with in-tissue passive sampling from liver, kidney, brain and blubber of marine mammals. Environ. Int. 2022, 165, 107337.

[27]

Kang, H. M.; Ahn, S. H.; Choi, P.; Ko, Y. A.; Han, S. H.; Chinga, F.; Park, A. S. D.; Tao, J. L.; Sharma, K.; Pullman, J. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 2015, 21, 37–46.

[28]

Wang, X. F.; Yang, S. T.; Li, S. H.; Zhao, L.; Hao, Y. L.; Qin, J. J.; Zhang, L.; Zhang, C. Y.; Bian, W. J.; Zuo, L. et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020, 69, 2131–2142.

[29]

Evenepoel, P.; Poesen, R.; Meijers, B. The gut–kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014.

[30]

Gai, Z. B.; Wang, T. Q.; Visentin, M.; Kullak-Ublick, G. A.; Fu, X. J.; Wang, Z. G. Lipid accumulation and chronic kidney disease. Nutrients 2019, 11, 722.

[31]

Sonnenburg, J. L.; Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64.

[32]

Zhang, C. M.; Suo, M. Y.; Liu, L. X.; Qi, Y.; Zhang, C.; Xie, L.; Zheng, X. H.; Ma, C.; Li, J. Y.; Yang, J. M. et al. Melatonin alleviates contrast-induced acute kidney injury by activation of Sirt3. Oxid. Med. Cell. Longev. 2021, 2021, 6668887.

[33]

Huang, Y. S.; Lu, K. C.; Chao, T. K.; Chen, J. S.; Chen, A.; Guo, C. Y.; Hsieh, H. Y.; Shih, H. M.; Sytwu, H. K.; Wu, C. C. Role of melatonin receptor 1A and pituitary homeobox-1 coexpression in protecting tubular epithelial cells in membranous nephropathy. J. Pineal Res. 2018, 65, e12482.

[34]

Pan, S. J.; Guo, Y.; Hong, F.; Xu, P. F.; Zhai, Y. G. Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2022, 1868, 166281.

[35]

Cole, M.; Galloway, T. S. Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ. Sci. Technol. 2015, 49, 14625–14632.

[36]

Jing, J. R.; Zhang, L.; Han, L.; Wang, J. Y.; Zhang, W.; Liu, Z. Y.; Gao, A. Polystyrene micro-/nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines. Environ. Int. 2022, 161, 107131.

[37]

Cao, Z. W.; Fang, Y. L.; Lu, Y. H.; Tan, D. X.; Du, C. H.; Li, Y. M.; Ma, Q. L.; Yu, J. M.; Chen, M. Y.; Zhou, C. et al. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. J. Pineal Res. 2017, 62, e12389.

[38]

Fang, X. Z.; Huang, W. Y.; Sun, Q.; Zhao, Y.; Sun, R.; Liu, F.; Huang, D. M.; Zhang, Y. M.; Gao, F. F.; Wang, B. Melatonin attenuates cellular senescence and apoptosis in diabetic nephropathy by regulating STAT3 phosphorylation. Life Sci. 2023, 332, 122108.

[39]

Kang, H. W.; Zhang, W.; Jing, J. R.; Huang, D. Y.; Zhang, L.; Wang, J. Y.; Han, L.; Liu, Z. Y.; Wang, Z. Y.; Gao, A. The gut–brain axis involved in polystyrene nanoplastics-induced neurotoxicity via reprogramming the circadian rhythm-related pathways. J. Hazard. Mater. 2023, 458, 131949.

[40]

Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie 2015, 61, 77–84.

[41]

Koziróg, M.; Poliwczak, A. R.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Broncel, M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J. Pineal Res. 2011, 50, 261–266.

[42]

Yin, J.; Li, Y. Y.; Han, H.; Chen, S.; Gao, J.; Liu, G.; Wu, X.; Deng, J. P.; Yu, Q. F.; Huang, X. G. et al. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J. Pineal Res. 2018, 65, e12524.

[43]

Wardoyo, A. Y. P.; Juswono, U. P.; Noor, J. A. E. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice. Toxicol. Rep. 2018, 5, 383–389.

[44]

Zou, H.; Chen, Y.; Qu, H. Y.; Sun, J.; Wang, T.; Ma, Y. G.; Yuan, Y.; Bian, J. C.; Liu, Z. P. Microplastics exacerbate cadmium-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. Int. J. Mol. Sci. 2022, 23, 14411.

[45]

Wang, W. Z.; Guan, J. F.; Feng, Y. Y.; Nie, L. J.; Xu, Y. Y.; Xu, H. Y.; Fu, F. Polystyrene microplastics induced nephrotoxicity associated with oxidative stress, inflammation, and endoplasmic reticulum stress in juvenile rats. Front. Nutr. 2023, 9, 1059660.

[46]

Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L. V.; Koh, G. Y.; Nagy, A.; Semenkovich, C. F.; Gordon, J. I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723.

[47]

Yang, T.; Richards, E. M.; Pepine, C. J.; Raizada, M. K. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 442–456.

[48]

Hu, H.; Shao, W. T.; Liu, Q.; Liu, N.; Wang, Q. H.; Xu, J.; Zhang, X.; Weng, Z. K.; Lu, Q. F.; Jiao, L. et al. Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion. Nat. Commun. 2022, 13, 252.

[49]

di Gregorio, M. C.; Cautela, J.; Galantini, L. Physiology and physical chemistry of bile acids. Int. J. Mol. Sci. 2021, 22, 1780.

[50]

Hong, Y.; Sheng, L. L.; Zhong, J.; Tao, X.; Zhu, W. Z.; Ma, J. L.; Yan, J.; Zhao, A. H.; Zheng, X. J.; Wu, G. S. et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes 2021, 13, 1–20.

[51]

Zhao, Y. L.; Guo, X. Y.; Yan, S. M.; Shi, B. L.; Sheng, R. Acetate regulates milk fat synthesis through the mammalian target of rapamycin/eukaryotic initiation factor 4E signaling pathway in bovine mammary epithelial cells. J. Dairy Sci. 2021, 104, 337–345.

[52]

Gao, X.; Lin, S. H.; Ren, F.; Li, J. T.; Chen, J. J.; Yao, C. B.; Yang, H. B.; Jiang, S. X.; Yan, G. Q.; Wang, D. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 2016, 7, 11960.

[53]

Liang, B. X.; Huang, Y. J.; Zhong, Y. Z.; Li, Z. M.; Ye, R. Y.; Wang, B.; Zhang, B. L.; Meng, H.; Lin, X.; Du, J. X. et al. Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson’s disease-like neurodegeneration by causing energy metabolism disorders in mice. J. Hazard. Mater. 2022, 430, 128459.

[54]

Jiang, Q. C.; Chen, X. H.; Jiang, H. C.; Wang, M. H.; Zhang, T. Q.; Zhang, W. Y. Effects of acute exposure to polystyrene nanoplastics on the channel catfish larvae: Insights from energy metabolism and transcriptomic analysis. Front. Physiol. 2022, 13, 923278.

[55]

Fan, X. P.; Wei, X. J.; Hu, H. L.; Zhang, B. Y.; Yang, D. Q.; Du, H. N.; Zhu, R. J.; Sun, X. T.; Oh, Y.; Gu, N. Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice. Chemosphere 2022, 288, 132607.

[56]

Chen, G. Q.; Xiong, S. Y.; Jing, Q.; van Gestel, C. A. M.; van Straalen, N. M.; Roelofs, D.; Sun, L. M.; Qiu, H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci. Total Environ. 2023, 854, 158666.

[57]

Lai, W. C.; Xu, D.; Li, J. M.; Wang, Z.; Ding, Y.; Wang, X. N.; Li, X. S.; Xu, N.; Mai, K. S.; Ai, Q. H. Dietary polystyrene nanoplastics exposure alters liver lipid metabolism and muscle nutritional quality in carnivorous marine fish large yellow croaker ( Larimichthys crocea). J. Hazard. Mater. 2021, 419, 126454.

[58]

Yuan, Y. J.; Yang, X. Q.; Li, Y.; Liu, Q.; Wu, F.; Qu, H. Y.; Gao, H. Y.; Ge, J. T.; Xu, Y.; Wang, H. et al. Expression and prognostic significance of fatty acid synthase in clear cell renal cell carcinoma. Pathol. Res. Pract. 2020, 216, 153227.

[59]

Yamamoto, T.; Takabatake, Y.; Minami, S.; Sakai, S.; Fujimura, R.; Takahashi, A.; Namba-Hamano, T.; Matsuda, J.; Kimura, T.; Matsui, I. et al. Eicosapentaenoic acid attenuates renal lipotoxicity by restoring autophagic flux. Autophagy 2021, 17, 1700–1713.

[60]

Bobulescu, I. A. Renal lipid metabolism and lipotoxicity. Curr. Opin. Nephrol. Hypertens. 2010, 19, 393–402.

[61]

Opazo-Ríos, L.; Mas, S.; Marín-Royo, G.; Mezzano, S.; Gómez-Guerrero, C.; Moreno, J. A.; Egido, J. Lipotoxicity and diabetic nephropathy: Novel mechanistic insights and therapeutic opportunities. Int. J. Mol. Sci. 2020, 21, 2632.

[62]

Jin, J. X.; Lee, S.; Taweechaipaisankul, A.; Kim, G. A.; Lee, B. C. Melatonin regulates lipid metabolism in porcine oocytes. J. Pineal Res. 2017, 62, e12388.

[63]

Wang, D. X.; Wei, Y. Q.; Wang, T. T.; Wan, X. C.; Yang, C. S.; Reiter, R. J.; Zhang, J. S. Melatonin attenuates (−)-epigallocatehin-3-gallate-triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice. J. Pineal Res. 2015, 59, 497–507.

[64]

Zhang, L.; Jing, J. R.; Han, L.; Liu, Z. Y.; Wang, J. Y.; Zhang, W.; Gao, A. Melatonin and probiotics ameliorate nanoplastics-induced hematopoietic injury by modulating the gut microbiota-metabolism. Nano Res. 2023, 16, 2885–2894.

Nano Research
Pages 7365-7375
Cite this article:
Kang H, Huang D, Jing J, et al. Fasn involved in the nephrotoxicity induced by polystyrene nanoplastics and the intervention of melatonin through intestinal microbiota-mediated lipid metabolism disorder. Nano Research, 2024, 17(8): 7365-7375. https://doi.org/10.1007/s12274-024-6610-9
Topics:
Metrics & Citations  
Article History
Copyright
Return