AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Plasmon-enhanced ultra-high photoresponse of single-wall carbon nanotube/copper/silicon near-infrared photodetectors

Yi-Ming Zhao1,2Xian-Gang Hu1Chao Chen1,2Zuo-Hua Wang3An-Ping Wu1Hong-Wang Zhang3Peng-Xiang Hou1,2( )Chang Liu1,2( )Hui-Ming Cheng1,4
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Show Author Information

Graphical Abstract

Owing to the surface plasmon resonance effect, a single-wall carbon nanotube/Cu/silicon photodetector shows a significantly improved photoresponse (by ~ 20,000 times).

Abstract

Single wall carbon nanotube (SWCNT)/Si heterojunction photodetectors have the advantages of high photoresponse ability and simple structure, however, their detection wavelength range are usually lower than 1100 nm, which limits their application in the infrared band. We report a SWCNT/Cu/Si photodetector with both a high photoresponse and a detection range up to the infrared band by depositing a Cu nanoparticles (NPs) layer between a SWCNT film and a n-Si substrate. It was found that the Cu NPs produce strong surface plasmon resonance (SPR) under laser irradiation, which breaks through the limitation of Si band gap and greatly improves the photoresponse of the SWCNT/Cu/Si photodetector in the near infrared band. The responsivity (R) of the photodetector in the wavelength range of 1850–1200 nm reached 2.2–14.15 mA/W, which is the highest value in the reported plasmon enhanced n-Si based photodetectors, and about 20,000 times higher than that of a SWCNT/Si photodetector. Its R value for 1550 nm wavelength used in optical communications reached ~ 8.2 mA/W, which is 64% higher than the previously reported values of commonly used photodetectors. We attribute the significant increase to the strong SPR and low Schottky barrier of Cu with n-Si, which facilitates the generation and transfer of the carriers.

Electronic Supplementary Material

Download File(s)
6612_ESM.pdf (4.6 MB)

References

[1]

Jiang, S.; Hou, P. X.; Liu, C.; Cheng, H. M. High-performance single-wall carbon nanotube transparent conductive films. J. Mater. Sci. Technol. 2019, 35, 2447–2462.

[2]

Chen, C.; Zhao, Y. M.; Yu, H. L.; Jiao, X. Y.; Hu, X. G.; Li, X.; Hou, P. X.; Liu, C.; Cheng, H. M. High-performance infrared photodetector based on single-wall carbon nanotube films. Carbon 2023, 206, 150–156.

[3]

Zhao, Y. M.; Hu, X. G.; Shi, C.; Ding, W. T.; Hou, P. X.; Liu, C.; Cheng, H. M. A high-performance photodetector based on small-bundled single-wall carbon nanotube film/silicon heterojunctions. J. Mater. Chem. A 2022, 10, 16986–16994.

[4]

Pelella, A.; Capista, D.; Passacantando, M.; Faella, E.; Grillo, A.; Giubileo, F.; Martucciello, N.; Di Bartolomeo, A. A self-powered CNT-Si photodetector with tuneable photocurrent. Adv. Electron. Mater. 2023, 9, 2200919.

[5]

Guo, S. Y.; Hu, X. G.; Hou, P. X.; Liu, Z.; Zhao, Y. M.; Li, Y. G.; Zhang, F.; Liu, C.; Cheng, H. M. A self-powered flexible gas-sensing system based on single-wall carbon nanotube films. Cell Rep. Phys. Sci. 2022, 3, 101163.

[6]

Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.; Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 2018, 4, eaap9264.

[7]

Hou, P. X.; Zhang, F.; Zhang, L. L.; Liu, C.; Cheng, H. M. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv. Funct. Mater. 2022, 32, 2108541.

[8]

He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989–1011.

[9]

Liu, P.; Yang, S. E.; Chen, Y. S.; Ma, Y. X.; Liu, S.; Fang, X. Q.; Fan, F. L.; Han, J. X. Carbon nanotube-based heterostructures for high-performance photodetectors: Recent progress and future prospects. Ceram. Int. 2020, 46, 19655–19663.

[10]

Salvato, M.; Scagliotti, M.; De Crescenzi, M.; Boscardin, M.; Attanasio, C.; Avallone, G.; Cirillo, C.; Prosposito, P.; De Matteis, F.; Messi, R. et al. Time response in carbon nanotube/Si based photodetectors. Sens. Actuat. A: Phys. 2019, 292, 71–76.

[11]

Philipp, H. R.; Taft, E. A. Optical constants of silicon in the region 1 to 10 ev. Phys. Rev. 1960, 120, 37–38.

[12]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci. Appl. 2021, 10, 123.

[13]

Zhou, L. W.; Zhang, C.; Li, L. J.; Liu, T. T.; Li, K.; Wu, S. L.; Li, X. F. Nanobowls-assisted broadband absorber for unbiased Si-based infrared photodetection. Opt. Express 2021, 29, 15505–15516.

[14]

Ismail, R. A.; Kadhim, R. G.; Abdulridha, W. M. Effect of multiwalled carbon nanotubes incorporation on the performance of porous silicon photodetector. Optik 2016, 127, 8144–8152.

[15]

Riaz, A.; Alam, A.; Selvasundaram, P. B.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Krupke, R. Near-infrared photoresponse of waveguide-integrated carbon nanotube-silicon junctions. Adv. Electron. Mater. 2019, 5, 1800265.

[16]

Tzolov, M. B.; Kuo, T. F.; Straus, D. A.; Yin, A. J.; Xu, J. Carbon nanotube-silicon heterojunction arrays and infrared photocurrent responses. J. Phys. Chem. C 2007, 111, 5800–5804.

[17]

Scagliotti, M.; Salvato, M.; Frezza, F.; Catone, D.; Di Mario, L.; Boscardin, M.; De Crescenzi, M.; Castrucci, P. Carbon nanotube film/silicon heterojunction photodetector for new cutting-edge technological devices. Appl. Sci. 2021, 11, 606.

[18]

Ong, P. L.; Euler, W. B.; Levitsky, I. A. Carbon nanotube-Si diode as a detector of mid-infrared illumination. Appl. Phys. Lett. 2010, 96, 033106.

[19]

Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874–881.

[20]

Zhang, C.; Luo, Y.; Maier, S. A.; Li, X. F. Recent progress and future opportunities for hot carrier photodetectors: From ultraviolet to infrared bands. Laser Photon. Rev. 2022, 16, 2100714.

[21]

Alavirad, M.; Roy, L.; Berini, P. Surface plasmon enhanced photodetectors based on internal photoemission. J. Photon. Energy 2016, 6, 042511.

[22]

Li, W.; Valentine, J. G. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 2017, 6, 177–191.

[23]

Murray, W. A.; Barnes, W. L. Plasmonic materials. Adv. Mater. 2007, 19, 3771–3782.

[24]

Kannan, P. K.; Shankar, P.; Blackman, C.; Chung, C. H. Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 2019, 31, 1803432.

[25]

Dang, X. N.; Qi, J. F.; Klug, M. T.; Chen, P. Y.; Yun, D. S.; Fang, N. X.; Hammond, P. T.; Belcher, A. M. Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett. 2013, 13, 637–642.

[26]

Wu, C. H.; Khanikaev, A. B.; Adato, R.; Arju, N.; Yanik, A. A.; Altug, H.; Shvets, G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2011, 11, 69–75.

[27]

Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632.

[28]

Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337.

[29]

Wang, Y. F.; Zhu, Y.; Gu, H. M.; Wang, X. F. Enhanced performances of n-ZnO nanowires/p-Si heterojunctioned pyroelectric near-infrared photodetectors via the plasmonic effect. ACS Appl. Mater. Interfaces 2021, 13, 57750–57758.

[30]

Sobhani, A.; Knight, M. W.; Wang, Y. M.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z. Y.; Nordlander, P.; Halas, N. J. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643.

[31]

Feng, B.; Zhu, J. Y.; Lu, B. R.; Liu, F. F.; Zhou, L.; Chen, Y. F. Achieving infrared detection by all-Si plasmonic hot-electron detectors with high detectivity. ACS Nano 2019, 13, 8433–8441.

[32]

Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science 2011, 332, 702–704.

[33]

Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510–3514.

[34]

Wen, L.; Chen, Y. F.; Liu, W. W.; Su, Q.; Grant, J.; Qi, Z. Y.; Wang, Q. L.; Chen, Q. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-Schottky junction. Laser Photon. Rev. 2017, 11, 1700059.

[35]

Chen, Z. K.; Hu, X. G.; Guo, S. Y.; Hou, P. X.; Liu, C. Air-stable room-temperature photodetector based on large-diameter small-bundle single-wall carbon nanotube films. J. Mater. Sci. Technol. 2021, 73, 205–209.

[36]

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2013, 107, 668–677.

[37]

Jacobsen, V.; Stoller, P.; Brunner, C.; Vogel, V.; Sandoghdar, V. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 2006, 14, 405–414.

[38]

Desiatov, B.; Goykhman, I.; Mazurski, N.; Shappir, J.; Khurgin, J. B.; Levy, U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica 2015, 2, 335–338.

[39]

Wen, L.; Chen, Y. F.; Liang, L.; Chen, Q. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites. ACS Photon. 2018, 5, 581–591.

[40]

Krayer, L. J.; Tennyson, E. M.; Leite, M. S.; Munday, J. N. Near-IR imaging based on hot carrier generation in nanometer-scale optical coatings. ACS Photon. 2018, 5, 306–311.

[41]

Lin, T. Y.; Lin, K. T.; Lin, C. C.; Lee, Y. W.; Shiu, L. T.; Chen, W. Y.; Chen, H. L. Magnetic fields affect hot electrons in silicon-based photodetectors at telecommunication wavelengths. Mater. Horiz. 2019, 6, 1156–1168.

[42]

Knight, M. W.; Wang, Y. M.; Urban, A. S.; Sobhani, A.; Zheng, B. Y.; Nordlander, P.; Halas, N. J. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013, 13, 1687–1692.

[43]

Krayer, L. J.; Palm, K. J.; Gong, C.; Torres, A.; Villegas, C. E. P.; Rocha, A. R.; Leite, M. S.; Munday, J. N. Enhanced near-infrared photoresponse from nanoscale Ag-Au alloyed films. ACS Photon. 2020, 7, 1689–1698.

[44]

Yang, Z. Q.; Du, K.; Wang, H.; Lu, F. F.; Pang, Y.; Wang, J.; Gan, X. T.; Zhang, W. D.; Mei, T.; Chua, S. J. Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure. Nanotechnology 2019, 30, 075204.

[45]

Akbari, A.; Tait, R. N.; Berini, P. Surface plasmon waveguide Schottky detector. Opt. Express 2010, 18, 8505–8514.

Nano Research
Pages 5930-5936
Cite this article:
Zhao Y-M, Hu X-G, Chen C, et al. Plasmon-enhanced ultra-high photoresponse of single-wall carbon nanotube/copper/silicon near-infrared photodetectors. Nano Research, 2024, 17(7): 5930-5936. https://doi.org/10.1007/s12274-024-6612-7
Topics:

567

Views

2

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 18 January 2024
Revised: 26 February 2024
Accepted: 08 March 2024
Published: 01 April 2024
© Tsinghua University Press 2024
Return