AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A machine learning-guided design and manufacturing of wearable nanofibrous acoustic energy harvesters

Negar Hosseinzadeh Kouchehbaghi1,2Maryam Yousefzadeh2( )Aliakbar Gharehaghaji2( )Safoora Khosravi1,3Danial Khorsandi1Reihaneh Haghniaz1Ke Cao4Mehmet R. Dokmeci1Mohammad Rostami5Ali Khademhosseini1( )Yangzhi Zhu1( )
Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T1Z4, Canada
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Department of Computer Science, University of Southern California, Los Angeles, CA 90007, USA
Show Author Information

Graphical Abstract

This work reports on machine learning-guided design and manufacturing of wearable nanofibrous acoustic energy harvesters (NAEH). The machine learning (ML)-guided wearable NAEH platform can deliver a maximal acoustoelectric power density output of 829 µW/cm3 within the surrounding noise levels and maintain a high energy conversion efficiency of 66%, which has not been explored before. Our work provides a previously unexplored route to utilize machine learning in advancing wearable NAEH with excellent practicability.

Abstract

Nanofibrous acoustic energy harvesters (NAEHs) have emerged as promising wearable platforms for efficient noise-to-electricity conversion in distributed power energy systems and wearable sound amplifiers for assistive listening devices. However, their real-life efficacy is hampered by low power output, particularly in the low-frequency range (< 1 kHz). This study introduces a novel approach to enhance the performance of NAEHs by applying machine learning (ML) techniques to guide the synthesis of electrospun polyvinylidene fluoride (PVDF)/polyurethane (PU) nanofibers, optimizing their application in wearable NAEHs. We use a feed-forward neural network along with solving an optimization problem to find the optimal input values of the electrospinning (applied voltage, nozzle-collector distance, electrospinning time, and drum rotation speed) to generate maximum output performance (acoustic-to-electricity conversion efficiency). We first prepared a dataset to train the network to predict the output power given the input variables with high accuracy. Upon introducing the neural network, we fix the network and then solve an optimization problem using a genetic algorithm to search for the input values that lead to the maximum energy harvesting efficiency. Our ML-guided wearable PVDF/PU NAEH platform can deliver a maximal acoustoelectric power density output of 829 µW/cm3 within the surrounding noise levels. In addition, our system can function stably in a broad frequency (0.1–2 kHz) with a high energy conversion efficiency of 66%. Sound recognition analysis reveals a robust correlation exceeding 0.85 among lexically akin terms with varying sound intensities, contrasting with a diminished correlation below 0.27 for words with disparate semantic connotations. Overall, this work provides a previously unexplored route to utilize ML in advancing wearable NAEHs with excellent practicability.

Electronic Supplementary Material

Download File(s)
6613_ESM.pdf (2.4 MB)

References

[1]

Zhu, Y. Z.; Li, J. H.; Kim, J.; Li, S. P.; Zhao, Y. C.; Bahari, J.; Eliahoo, P.; Li, G. H.; Kawakita, S.; Haghniaz, R. et al. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023, 296, 122075.

[2]

Luo, Y. F.; Abidian, M. R.; Ahn, J. H.; Akinwande, D.; Andrews, A. M.; Antonietti, M.; Bao, Z. N.; Berggren, M.; Berkey, C. A.; Bettinger, C. J. et al. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295.

[3]

Mo, X. W.; Zhou, H.; Li, W. B.; Xu, Z. S.; Duan, J. J.; Huang, L.; Hu, B.; Zhou, J. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019, 65, 104033.

[4]

Zhu, Y. Z.; Haghniaz, R.; Hartel, M. C.; Guan, S. H.; Bahari, J.; Li, Z. J.; Baidya, A.; Cao, K.; Gao, X. X.; Li, J. H. et al. A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 2023, 35, 2209300.

[5]

Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

[6]

Choi, J.; Jung, I.; Kang, C. Y. A brief review of sound energy harvesting. Nano Energy 2019, 56, 169–183.

[7]

Kim, S.; Choi, J.; Seung, H. M.; Jung, I.; Ryu, K. H.; Song, H. C.; Kang, C. Y.; Kim, M. Gradient-index phononic crystal and Helmholtz resonator coupled structure for high-performance acoustic energy harvesting. Nano Energy 2022, 101, 107544.

[8]
Biswas, S.; Lee, S. W.; Lee, Y.; Choi, H. J.; Chen, J. J.; Yang, X.; Du, Y. X.; Falcone, N.; de Barros, N. R.; Lee, S. M. et al. Emerging energy harvesters in flexible bioelectronics: From wearable devices to biomedical innovations. Small Sci., in press, DOI: 10.1002/smsc.202300148.
[9]

Chen, F. Q.; Wu, Y. H.; Ding, Z. Y.; Xia, X.; Li, S. H.; Zheng, H. W.; Diao, C. L.; Yue, G. T.; Zi, Y. L. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy 2019, 56, 241–251.

[10]

Yuan, M.; Cao, Z. P.; Luo, J.; Chou, X. J. Recent developments of acoustic energy harvesting: A review. Micromachines (Basel) 2019, 10, 48.

[11]

Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567.

[12]

Xu, W. K.; Guo, J. T.; Wen, H. Y.; Meng, X. H.; Hong, H. X.; Yuan, J. B.; Gao, J. A.; Liu, D. Y.; Ran, Q.; Wang, Y. D. et al. Laminated triboelectric acoustic energy harvester based on electrospun nanofiber towards real-time noise decibel monitoring. Nano Energy 2022, 99, 107348.

[13]

Feng, Z. B.; Zhao, Z. Q.; Liu, Y. N.; Liu, Y. K.; Cao, X. Y.; Yu, D. G.; Wang, K. Piezoelectric effect polyvinylidene fluoride (PVDF): From energy harvester to smart skin and electronic textiles. Adv. Mater. Technol. 2023, 8, 2300021.

[14]

Abdolmaleki, H.; Haugen, A. B.; Buhl, K. B.; Daasbjerg, K.; Agarwala, S. Interfacial engineering of PVDF-TrFE toward higher piezoelectric, ferroelectric, and dielectric performance for sensing and energy harvesting applications. Adv. Sci. 2023, 10, 2205942.

[15]

Sun, W. H.; Ji, G. S.; Chen, J. L.; Sui, D.; Zhou, J.; Huber, J. Enhancing the acoustic-to-electrical conversion efficiency of nanofibrous membrane-based triboelectric nanogenerators by nanocomposite composition. Nano Energy 2023, 108, 108248.

[16]

Ge, X. H.; Hu, N.; Yan, F. J.; Wang, Y. Development and applications of electrospun nanofiber-based triboelectric nanogenerators. Nano Energy 2023, 112, 108444.

[17]

Zhang, M. D.; Liu, C. K.; Li, B. Y.; Shen, Y. T.; Wang, H.; Ji, K. Y.; Mao, X.; Wei, L.; Sun, R. J.; Zhou, F. L. Electrospun PVDF-based piezoelectric nanofibers: Materials, structures, and applications. Nanoscale Adv. 2023, 5, 1043–1059.

[18]

Su, Y. J.; Li, W. X.; Cheng, X. X.; Zhou, Y. H.; Yang, S.; Zhang, X.; Chen, C. X.; Yang, T. N.; Pan, H.; Xie, G. Z. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.

[19]

Nezadi, M.; Keshvari, H.; Yousefzadeh, M. Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds. Adv. Nano Res. 2021, 10, 59–69.

[20]

Gupta, V.; Kumar, A.; Mondal, B.; Babu, A.; Ranpariya, S.; Sinha, D. K.; Mandal, D. Machine learning-aided all-organic air-permeable piezoelectric nanogenerator. ACS Sustain. Chem. Eng. 2023, 11, 6173–6182.

[21]

Ieracitano, C.; Paviglianiti, A.; Campolo, M.; Hussain, A.; Pasero, E.; Morabito, F. C. A novel automatic classification system based on hybrid unsupervised and supervised machine learning for electrospun nanofibers. IEEE/CAA J. Autom. Sin. 2021, 8, 64–76.

[22]

Hwang, S. H.; Song, J. Y.; Ryu, H. I.; Oh, J. H.; Lee, S.; Lee, D.; Park, D. Y.; Park, S. M. Adaptive electrospinning system based on reinforcement learning for uniform-thickness nanofiber air filters. Adv. Fiber Mater. 2023, 5, 617–631.

[23]

Zhan, Y. H.; Zhu, J. Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion. Appl. Energy 2024, 355, 122336.

[24]

Salari, M.; Alahabadi, A.; Rahmani-Sani, A.; Miri, M.; Yazdani-Aval, M.; Lotfi, H.; Saghi, M. H.; Rastegar, A.; Sepehr, M. N.; Darvishmotevalli, M. A comparative study of response surface methodology and artificial neural network based algorithm genetic for modeling and optimization of EP/US/GAC oxidation process in dexamethasone degradation: Application for real wastewater, electrical energy consumption. Chemosphere 2024, 349, 140832.

[25]

Balraj, S.; Prakash, D. G.; Iyyappan, J.; Bharathiraja, B. Modelling and optimization of biodiesel production from waste fish oil using nano immobilized r Pichiapastoris whole cell biocatalyst with response surface methodology and hybrid artificial neural network based approach. Bioresour. Technol. 2024, 393, 130012.

[26]

Komori, T.; Makishima, K. Numbers of fiber-to-fiber contacts in general fiber assemblies. Text. Res. J. 1977, 47, 13–17.

[27]

Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A. A.; Luo, J.; Shah, T. H.; Siores, E.; Thundat, T. Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 2015, 51, 8257–8260.

[28]

Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

[29]

Shao, H.; Wang, H. X.; Cao, Y. Y.; Ding, X.; Bai, R. X.; Chang, H. B.; Fang, J.; Jin, X.; Wang, W. Y.; Lin, T. Single-layer piezoelectric nanofiber membrane with substantially enhanced noise-to-electricity conversion from endogenous triboelectricity. Nano Energy 2021, 89, 106427.

[30]

Haghdoost, F.; Razbin, M.; Bahrami, H.; Barzin, J.; Ghaee, A. Modeling and optimization of the core–shell nanofibrous composite mat as a scaffold via hybrid models. J. Ind. Text 2022, 52, 15280837221112406.

[31]

Kara, F.; Karabatak, M.; Ayyıldız, M.; Nas, E. Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cutting. J. Mater. Res. Technol. 2020, 9, 969–983.

[32]
Davim, J. P. Statistical and Computational Techniques in Manufacturing; Springer: Berlin, Heidelberg, 2012.
[33]
Majumdar, A. Soft Computing in Textile Engineering; Elsevier: Amsterdam, 2010.
[34]

Xie, L. P.; Zhang, Z. L.; Wu, Q. S.; Gao, Z. X.; Mi, G. T.; Wang, R. Q.; Sun, H. B.; Zhao, Y.; Du, Y. N. Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale 2023, 15, 405–433.

[35]

Wu, X. S.; Wang, S. C.; Huang, W.; Dong, Y.; Wang, Z. R.; Huang, W. G. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat. Commun. 2023, 14, 468.

[36]

Cao, Z. L.; Sun, B.; Zhou, G. D.; Mao, S. S.; Zhu, S. H.; Zhang, J.; Ke, C.; Zhao, Y.; Shao, J. Y. Memristor-based neural networks: A bridge from device to artificial intelligence. Nanoscale Horiz. 2023, 8, 716–745.

[37]

Abiodun, O. I.; Jantan, A.; Omolara, A. E.; Dada, K. V.; Mohamed, N. A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938.

[38]

Beasley, D.; Bull, D. R.; Martin, R. R. An overview of genetic algorithms: Part 1, fundamentals. Univ. Comput. 1993, 15, 58–69.

[39]

Beasley, D.; Bull, D. R.; Martin, R. R. An overview of genetic algorithms: Part 2, research topics. Univ. Comput. 1993, 15, 170–181.

[40]
Mirjalili, S.; Dong, J. S. Multi-Objective Optimization Using Artificial Intelligence Techniques; Springer: Cham, 2020.
[41]

Manzoni, L.; Mariot, L.; Tuba, E. Balanced crossover operators in Genetic Algorithms. Swarm Evol. Comput. 2020, 54, 100646.

[42]

Hameed, W. M. The role of crossover on optimization of a function problem using genetic algorithms. Int. J. Comput. Sci. Mob. Comput. 2016, 5, 425–429.

[43]

Garson, G. D. Interpreting neural-network connection weights. AI Expert 1991, 6, 46–51.

[44]

Goh, A. T. C. Seismic liquefaction potential assessed by neural networks. J. Geotech. Eng. 1994, 120, 1467–1480.

[45]

Lang, C. H.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108.

[46]

Mohammadi, A.; Barikani, M.; Barmar, M. Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polym. Bull. 2015, 72, 219–234.

[47]

Adeli, B.; Gharehaghaji, A. A.; Jeddi, A. A. A. A feasibility study on production and optimization of PVDF/PU polyblend nanofiber layers using expert design analysis. Iran. Polym. J. 2021, 30, 535–545.

[48]

Kaur, G.; Meena, J. S.; Jassal, M.; Agrawal, A. K. Synergistic effect of polyurethane in polyurethane-poly (vinylidene fluoride) nanofiber-based stretchable piezoelectric nanogenerators (S-PENGs). ACS Appl. Polym. Mater. 2022, 4, 4751–4764.

[49]

Li, Y.; Xu, M. H.; Xia, Y. S.; Wu, J. M.; Sun, X. K.; Wang, S.; Hu, G. H.; Xiong, C. X. Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity. Chem. Eng. J. 2020, 388, 124205.

Nano Research
Pages 9181-9192
Cite this article:
Kouchehbaghi NH, Yousefzadeh M, Gharehaghaji A, et al. A machine learning-guided design and manufacturing of wearable nanofibrous acoustic energy harvesters. Nano Research, 2024, 17(10): 9181-9192. https://doi.org/10.1007/s12274-024-6613-6
Topics:
Part of a topical collection:

1046

Views

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 24 November 2023
Revised: 06 March 2024
Accepted: 08 March 2024
Published: 20 April 2024
© Tsinghua University Press 2024
Return