AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Coupled Cu doping and Z-scheme heterojunction for synergistically enhanced tetracycline photodegradation

Huidong Shen1Chunming Yang2Song Hong1Leiduan Hao1Liang Xu1Alex W. Robertson3Zhenyu Sun1( )
Country State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
Department of Physics, University of Warwick, Coventry CV 47AL, UK
Show Author Information

Graphical Abstract

A novel Z-scheme S-C3N4/Cu/C-TiO2 heterojunction is successfully constructed, which demonstrates excellent photocatalytic performances for tetracycline hydrochloride degradation. The superior performance is attributed to the synergy between Cu doping and Z-scheme heterojunction, which not only enhances the interfacial electric field effect, thus boosting charge separation, but also facilitates the redox capability.

Abstract

Semiconductor-based photocatalysis by utilizing solar energy for sustainable organic pollutant elimination has been a promising tactic to alleviate environmental issues. Nevertheless, the development of robust and efficient photocatalysts to degrade organic pollutants still faces major challenges because of insufficient charge separation. Here we design and fabricate a heterojunction consisting of copper, carbon-modified TiO2, and sulfur-doped g-C3N4 nanosheets (i.e., S-C3N4/Cu/C-TiO2). The heterostructure affords a remarkable synergistic photocatalysis for tetracycline hydrochloride degradation, achieving an 82.6% removal efficiency within 30 min under visible light irradiation, about 15.4 and 7.3 times higher than that of S-C3N4 and C-TiO2, respectively. The superior performance is attributed to the synergy between Cu doping and the Z-scheme heterojunction, which not only enhances the interfacial electric field effect, facilitating charge separation, but also boosts the redox capability. The charge carrier transfer between Cu/C-TiO2 and S-C3N4 follows a Z-scheme, as verified by trapping experiments, electron spin-resonance spectroscopy, and density functional theory calculations. Furthermore, the tetracycline hydrochloride degradation pathways are enunciated by liquid chromatograph mass spectrometry analysis. This work provides an effective approach for constructing high-performance photocatalysts that have potential in environmental remediation.

Electronic Supplementary Material

Download File(s)
6614_ESM.pdf (6.7 MB)

References

[1]

Zhu, H. J.; Li, M. H.; Zou, L. N.; Hu, Y. Y.; Hao, H. G.; Dou, J. M.; Mao, J. J. A study on singlet oxygen generation for tetracycline degradation via modulating the size of α-Fe2O3 nanoparticle anchored on g-C3N4 nanotube photocatalyst. Nano Res. 2023, 16, 2236–2244.

[2]

Wang, L. J.; Zhang, Z.; Guan, R. Q.; Wu, D. D.; Shi, W. L.; Yu, L. M.; Li, P.; Wei, W.; Zhao, Z.; Sun, Z. C. Synergistic CO2 reduction and tetracycline degradation by CuInZnS-Ti3C2T x in one photoredox cycle. Nano Res. 2022, 15, 8010–8018.

[3]

Shen, H. D.; Peppel, T.; Strunk, J.; Sun, Z. Y. Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective. Sol. RRL 2020, 4, 1900546.

[4]

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

[5]

Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.

[6]

Zhang, J. N.; Lei, Y. F.; Cao, S.; Hu, W. P.; Piao, L. Y.; Chen, X. B. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res. 2022, 15, 2013–2022.

[7]

Zhang, Y. Y.; Yan, J. H. Recent advances in the synthesis of defective TiO2 nanofibers and their applications in energy and catalysis. Chem. Eng. J. 2023, 472, 144831.

[8]

Shen, H. D.; Fu, F.; Xue, W. W.; Yang, X. X.; Ajmal, S.; Zhen, Y. Z.; Guo, L.; Wang, D. J.; Chi, R. In situ fabrication of Bi2MoO6/Bi2MoO6− x homojunction photocatalyst for simultaneous photocatalytic phenol degradation and Cr(VI) reduction. J. Colloid Interface Sci. 2021, 599, 741–751.

[9]

Hui, X. C.; Li, L. F.; Xia, Q. N.; Hong, S.; Hao, L. D.; Robertson, A. W.; Sun, Z. Interface engineered Sb2O3/W18O49 heterostructure for enhanced visible-light-driven photocatalytic N2 reduction. Chem. Eng. J. 2022, 438, 135485.

[10]

Shen, H. D.; Yang, C. M.; Xue, W. W.; Hao, L. D.; Wang, D. J.; Fu, F.; Sun, Z. Y. Construction of ternary bismuth-based heterojunction by using (BiO)2CO3 as electron bridge for highly efficient degradation of phenol. Chem.—Eur. J. 2023, 29, e202300748.

[11]

Wang, C. J.; Zhao, Y. L.; Xu, H.; Li, Y. F.; Wei, Y. C.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl. Catal. B: Environ. 2020, 263, 118314.

[12]

Zeng, X. L.; Shu, S.; Meng, Y.; Wang, H. J.; Wang, Y. Enhanced photocatalytic degradation of sulfamethazine by g-C3N4/Cu, N-TiO2 composites under simulated sunlight irradiation. Chem. Eng. J. 2023, 456, 141105.

[13]

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2T X MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

[14]

Zhu, J. F.; Bi, Q. Y.; Tao, Y. H.; Guo, W. Y.; Fan, J. C.; Min, Y. L.; Li, G. S. Mo-modified ZnIn2S4@NiTiO3 s-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2213131.

[15]

Chen, W. J.; Liu, S.; Li, Q. Q.; Cheng, Q. R.; He, B. S.; Hu, Z. J.; Shen, Y. X.; Chen, H. Y.; Xu, G. Y.; Ou, X. M. et al. High-polarizability organic ferroelectric materials doping for enhancing the built-in electric field of perovskite solar cells realizing efficiency over 24%. Adv. Mater. 2022, 34, 2110482.

[16]

Zhai, L. L.; She, X. J.; Zhuang, L. C.; Li, Y. Y.; Ding, R.; Guo, X. Y.; Zhang, Y. Q.; Zhu, Y.; Xu, K.; Fan, H. J. et al. Modulating built-in electric field via variable oxygen affinity for robust hydrogen evolution reaction in neutral media. Angew. Chem., Int. Ed. 2022, 61, e202116057.

[17]

Liu, Z. Y.; Fan, S. Y.; Li, X. Y.; Niu, Z. D.; Wang, J.; Bai, C. P.; Duan, J.; Tadé, M. O.; Liu, S. M. Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis. Appl. Catal. B: Environ. 2023, 327, 122416.

[18]

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

[19]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[20]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[21]

Jia, G. R.; Sun, M. Z.; Wang, Y.; Shi, Y. B.; Zhang, L. Z.; Cui, X. Q.; Huang, B. L.; Yu, J. C. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Adv. Funct. Mater. 2022, 32, 2206817.

[22]

Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68.

[23]

Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction. ACS Nano 2021, 15, 14453–14464.

[24]

Zhang, Y. M.; Zhao, J. H.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X. B.; Lv, T. P.; Thangamuthu, M.; Zhang, J.; Guo, Y. et al. Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat. Commun. 2022, 13, 58.

[25]

Peng, C.; Zhou, T.; Wei, P.; Ai, H. Q.; Zhou, B. P.; Pan, H.; Xu, W. K.; Jia, J. B.; Zhang, K.; Wang, H. J. et al. Regulation of the rutile/anatase TiO2 phase junction in-situ grown on –OH terminated Ti3C2T x (MXene) towards remarkably enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 439, 135685.

[26]

Ge, H. B.; Zhang, B.; Liang, H. J.; Zhang, M. W.; Fang, K. G.; Chen, Y.; Qin, Y. Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Appl. Catal. B: Environ. 2020, 263, 118133.

[27]

Wang, Y. Y.; Yang, W. J.; Chen, X. J.; Wang, J.; Zhu, Y. F. Photocatalytic activity enhancement of core–shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B: Environ. 2018, 220, 337–347.

[28]

Zhao, Z. W.; Wang, Z. L.; Zhang, J. F.; Shao, C. F.; Dai, K.; Fan, K.; Liang, C. H. Interfacial chemical bond and oxygen vacancy-enhanced In2O3/CdSe-DETA S-scheme heterojunction for photocatalytic CO2 conversion. Adv. Funct. Mater. 2023, 33, 2214470.

[29]

Meng, A. Y.; Zhu, B. C.; Zhong, B.; Zhang, L. Y.; Cheng, B. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 2017, 422, 518–527.

[30]

Wang, K.; Cheng, M.; Xia, F. J.; Cao, N.; Zhang, F. X.; Ni, W. K.; Yue, X. Y.; Yan, K. P.; He, Y.; Shi, Y. et al. Atomically dispersed electron traps in Cu doped BiOBr boosting CO2 reduction to methanol by pure H2O. Small 2023, 19, 2207581.

[31]

Liu, W.; Li, Y. Y.; Liu, F. Y.; Jiang, W.; Zhang, D. D.; Liang, J. L. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Res. 2019, 151, 8–19.

[32]

Ji, H. D.; Du, P. H.; Zhao, D. Y.; Li, S.; Sun, F. B.; Duin, E. C.; Liu, W. 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic “hot spots” at the rutile-anatase-titanate interfaces. Appl. Catal. B: Environ. 2020, 263, 118357.

[33]

Han, X.; An, L.; Hu, Y.; Li, Y. G.; Hou, C. Y.; Wang, H. Z.; Zhang, Q. H. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Appl. Catal. B: Environ. 2020, 265, 118539.

[34]

Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal. 2019, 40, 289–319.

[35]

Luo, W.; Yu, Y. L.; Wu, Y. C.; Ma, Z. M.; Ma, X. Y.; Jiang, Y. M.; Shen, W.; He, R. X.; Su, W.; Li, M. Realizing efficient oxygen evolution at low overpotential via dopant-induced interfacial coupling enhancement effect. Appl. Catal. B: Environ. 2023, 336, 122928.

[36]

Wu, S. M.; Wang, Y. T.; Xiao, S. T.; Zhang, Y. X.; Tian, G.; Chen, J. B.; Zhao, X. F.; Janiak, C.; Shalom, M.; Bahnemann, D. W. et al. Design and synthesis of TiO2/C nanosheets with a directional cascade carrier transfer. Chem. Sci. 2022, 13, 7126–7131.

[37]

Wang, T.; Sun, F. L.; Liu, S. J.; Zhuang, G. L.; Li, B. X. Dioxygen-enhanced CO2 photoreduction on TiO2 supported Cu single-atom sites. Appl. Catal. B: Environ. 2023, 325, 122339.

[38]

Yang, Y. Y.; Niu, C. G.; Huang, D. W.; Guo, H.; Feng, H. P.; Li, L.; Liu, H. Y.; Fan, Q. Q.; Qin, M. Z. Appropriate oxygen vacancies and Mo-N bond synergistically modulate charge transfer dynamics of MoO3− x /S-CN for superior photocatalytic disinfection: Unveiling synergistic effects and disinfection mechanism. J. Hazard. Mater. 2023, 445, 130481.

[39]

Shang, H.; Li, M. Q.; Li, H.; Huang, S.; Mao, C. L.; Ai, Z. H.; Zhang, L. Z. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ. Sci. Technol. 2019, 53, 6444–6453.

[40]

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

[41]

Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553.

[42]

Shen, H. D.; Zhan, X. Y.; Hong, S.; Xu, L.; Yang, C. M.; Robertson, A. W.; Hao, L. D.; Fu, F.; Sun, Z. Y. Ultrafine MoO x clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Res. 2023, 16, 10713–10723.

[43]

Fu, F.; Shen, H. D.; Xue, W. W.; Zhen, Y. D.; Soomro, R. A.; Yang, X. X.; Wang, D. J.; Xu, B.; Chi, R. Alkali-assisted synthesis of direct Z-scheme based Bi2O3/Bi2MoO6 photocatalyst for highly efficient photocatalytic degradation of phenol and hydrogen evolution reaction. J. Catal. 2019, 375, 399–409.

[44]

Zhang, Z. Q.; Liang, J. L.; Zhang, W.; Zhou, M.; Zhu, X. L.; Liu, Z. Y.; Li, Y.; Guan, Z. Q.; Lee, C. S.; Wong, P. K. et al. Modified-pollen confined hybrid system: A promising union for visible-light-driven photocatalytic antibiotic degradation. Appl. Catal. B: Environ. 2023, 330, 122621.

[45]

Shen, Q. H.; Wei, L. F.; Bibi, R.; Wang, K.; Hao, D. D.; Zhou, J. C.; Li, N. X. Boosting photocatalytic degradation of tetracycline under visible light over hierarchical carbon nitride microrods with carbon vacancies. J. Hazard. Mater. 2021, 413, 125376.

[46]

Fu, F.; Shen, H. D.; Sun, X.; Xue, W. W.; Shoneye, A.; Ma, J. N.; Luo, L.; Wang, D. J.; Wang, J. G.; Tang, J. W. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis. Appl. Catal. B: Environ. 2019, 247, 150–162.

[47]

Tang, R. D.; Zeng, H.; Feng, C. Y.; Xiong, S.; Li, L.; Zhou, Z. P.; Gong, D. X.; Tang, L.; Deng, Y. C. Twisty C-TiO2/PCN S-scheme heterojunction with enhanced n→π* electronic excitation for promoted piezo-photocatalytic effect. Small 2023, 19, 2207636.

[48]

Qin, Y. Y.; Li, H.; Lu, J.; Feng, Y. H.; Meng, F. Y.; Ma, C. C.; Yan, Y. S.; Meng, M. J. Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 277, 119254.

[49]

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

[50]

Guan, Y. N.; Zhao, S. W.; Li, J. Q.; Deng, X. H.; Ma, S. C.; Zhang, Y. Q.; Jiang, B. J.; Yao, T. J.; Xin, B. F.; Zhang, J. X. et al. Partially oxidized MXenes-derived C-TiO2/Ti3C2 coupled with Fe-C3N4 as a ternary Z-scheme heterojunction: Enhanced photothermal and photo-Fenton performance. J. Colloid Interface Sci. 2022, 626, 639–652.

[51]

Kahn, A. Fermi level, work function and vacuum level. Mater. Horiz. 2016, 3, 7–10.

[52]

Han, X. X.; Lu, B. J.; Huang, X.; Liu, C.; Chen, S. X.; Chen, J. W.; Zeng, Z. L.; Deng, S. G.; Wang, J. Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity. Appl. Catal. B: Environ. 2022, 316, 121587.

[53]

He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.

Nano Research
Pages 5937-5948
Cite this article:
Shen H, Yang C, Hong S, et al. Coupled Cu doping and Z-scheme heterojunction for synergistically enhanced tetracycline photodegradation. Nano Research, 2024, 17(7): 5937-5948. https://doi.org/10.1007/s12274-024-6614-5
Topics:

634

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 December 2023
Revised: 02 March 2024
Accepted: 10 March 2024
Published: 12 April 2024
© Tsinghua University Press 2024
Return