AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improving discharge voltage and ion storage dynamic in polyaniline via modulation of carrier charge density for magnesium-metal batteries

Ping Luo1Feiyang Chao1Chunli Zuo2Wenwei Zhang2Fangyu Xiong3Zhen Huang1Dongyao Zhu1Gongtao Yu1Wenhui Zhong1Xingbao Chen2Han Tang1Xiujuan Wei4( )Qinyou An2( )
Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Show Author Information

Graphical Abstract

Modulation of carrier charge density improves the electrochemical performance of polyaniline in rechargeable magnesium-metal batteries. Experimental and density functional theory (DFT) calculations demonstrate the high discharge voltage and the excellent kinetic performance of polyaniline (PANI) in the storage of MgCl+.

Abstract

Rechargeable magnesium-metal batteries (RMBs) have gained much attention due to their abundant resources as well as high safety. However, the high charge density of Mg2+ is one of the main reasons for the slow kinetics performance of RMBs, and modulation of the charge density is an important strategy to improve the kinetics and electrochemical performance of RMBs. Herein, we report on the conductive polymer polyaniline (PANI) for RMBs, which is found to have excellent kinetics and high discharge voltage when storing MgCl+. In the storage of MgCl+, PANI exhibits a high average discharge voltage platform is 2.3 V vs. Mg2+/Mg, which is higher than that in storage of Mg2+. We demonstrated the reversible intercalation/de-intercalation of MgCl+ in PANI accompanying with the reversible transformation between the quinone ring (C–C, –N=) and the benzene ring (C=C, –NH–) during charging and discharging. Density functional theory calculation reveals that PANI exhibit higher voltages (2.25 V vs. 1.82 V) along with lower diffusion energy barriers (1.27 eV vs. 1.55 eV) for MgCl+ storage compared to Mg2+ storage. This work refines the storage mechanism of PANI in RMBs and provides new guidelines for the application of PANI in RMBs.

Electronic Supplementary Material

Download File(s)
6615_ESM.pdf (4.2 MB)

References

[1]

Zhang, W. W.; Tang, C.; Lan, B. X.; Chen, L. N.; Tang, W.; Zuo, C. L.; Dong, S. J.; An, Q. Y.; Luo, P. K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. J. Alloys Compd. 2020, 819, 152971

[2]

Zhang, W. W.; Zuo, C. L.; Tang, C.; Tang, W.; Lan, B. X.; Fu, X. D.; Dong, S. J.; Luo, P. The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries. Energy Technol. 2021, 9, 2000789.

[3]

Zhang, L. X.; Liu, Y. M.; You, Y.; Vinu, A.; Mai, L. Q. NASICONs-type solid-state electrolytes: The history, physicochemical properties, and challenges. Interdiscip. Mater. 2023, 2, 91–110.

[4]

Li, M.; Wang, X. P.; Meng, J. S.; Zuo, C. L.; Wu, B. K.; Li, C.; Sun, W.; Mai, L. Q. Comprehensive understandings of hydrogen bond chemistry in aqueous batteries. Adv. Mater. 2023, 36, 2308628.

[5]

Zhuo, S. F.; Huang, G.; Sougrat, R.; Guo, J.; Wei, N. N.; Shi, L.; Li, R. Y.; Liang, H. F.; Shi, Y.; Zhang, Q. Y. et al. Hierarchical nanocapsules of Cu-doped MoS2@H-substituted graphdiyne for magnesium storage. ACS Nano 2022, 16, 3955–3964.

[6]

Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279.

[7]

Chen, D.; Tao, D. G.; Ren, X.; Wen, F. J.; Li, T.; Chen, Z. X.; Cao, Y. L.; Xu, F. A molybdenum polysulfide in-situ generated from ammonium tetrathiomolybdate for high-capacity and high-power rechargeable magnesium battery cathodes. ACS Nano 2022, 16, 20510–20520.

[8]

Xiong, F. Y.; Jiang, Y. L.; Cheng, L.; Yu, R. H.; Tan, S. S.; Tang, C.; Zuo, C. L.; An, Q. Y.; Zhao, Y. L.; Gaumet, J. J. et al. Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries. Interdiscip. Mater. 2022, 1, 140–147.

[9]

Xiong, F. Y.; Fan, Y. Q.; Tan, S. S.; Zhou, L. M.; Xu, Y. N.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Magnesium storage performance and mechanism of CuS cathode. Nano Energy 2018, 47, 210–216.

[10]

Yang, J. D.; Wang, J. X.; Zhu, L.; Wang, X.; Dong, X. Y.; Zeng, W.; Wang, J. F.; Pan, F. S. Boosting magnesium storage in MoS2via a 1T phase introduction and interlayer expansion strategy: Theoretical prediction and experimental verification. Sustain. Energy Fuels 2021, 5, 5471–5480.

[11]

Ye, Z. S.; Li, P.; Wei, W. T.; Huang, C.; Mi, L. W.; Zhang, J. L.; Zhang, J. J. In situ anchoring anion-rich and multi-cavity NiS2 nanoparticles on NCNTs for advanced magnesium-ion batteries. Adv. Sci. 2022, 9, 2200067

[12]

Xu, H.; Li, Y.; Zhu, D.; Li, Z.; Sun, F. Z.; Zhu, W.; Chen, Y.; Zhang, J. C.; Ren, L.; Zhang, S. H. et al. Synchrotron radiation spectroscopic studies of Mg2+ storage mechanisms in high-performance rechargeable magnesium batteries with Co-doped FeS2 cathodes. Adv. Energy Mater. 2022, 12, 2201608.

[13]

Ding, S. Q.; Dai, X.; Li, Z. J.; Meng, A. L.; Wang, L.; Li, G. C.; Li, S. X. Strategy of cation/anion co-doping for potential elevating of VS4 cathode for magnesium ion batteries. Chem. Eng. J. 2022, 439, 135778.

[14]

Zuo, C. L.; Xiao, Y.; Pan, X. J.; Xiong, F. Y.; Zhang, W. W.; Long, J. C.; Dong, S. J.; An, Q. Y.; Luo, P. Organic–inorganic superlattices of vanadium oxide@polyaniline for high-performance magnesium-ion batteries. ChemSusChem 2021, 14, 2093–2099.

[15]

Ye, X. T.; Li, H. Y.; Hatakeyama, T.; Kobayashi, H.; Mandai, T.; Okamoto, N. L.; Ichitsubo, T. Examining electrolyte compatibility on polymorphic MnO2 cathodes for room-temperature rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2022, 14, 56685–56696.

[16]

Wang, W. X.; Xiong, F. Y.; Zhu, S. H.; Chen, J. H.; Xie, J.; An, Q. Y. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022, 2, 278–294.

[17]

Tang, H.; Zuo, C. L.; Xiong, F. Y.; Pei, C. Y.; Tan, S. S.; Luo, P.; Yang, W.; An, Q. Y.; Mai, L. Q. Flexible three-dimensional-networked iron vanadate nanosheet arrays/carbon cloths as high-performance cathodes for magnesium ion batteries. Sci. China Mater. 2022, 65, 2197–2206.

[18]

Fan, J. J.; Shen, S. Y.; Chen, Y.; Wu, L. N.; Peng, J.; Peng, X. X.; Shi, C. G.; Huang, L.; Lin, W. F.; Sun, S. G. A rechargeable Mg2+/Li+ hybrid battery based on sheet-like MoSe2/C nanocomposites cathode. Electrochem. Commun. 2018, 90, 16–20.

[19]

Xu, J.; Wei, Z. N.; Zhang, S. K.; Wang, X. X.; Wang, Y. H.; He, M. Y.; Huang, K. J. Hierarchical WSe2 nanoflower as a cathode material for rechargeable Mg-ion batteries. J. Colloid Interface Sci. 2021, 588, 378–383.

[20]

Zhou, L. M.; Xiong, F. Y.; Tan, S. S.; An, Q. Y.; Wang, Z. Y.; Yang, W.; Tao, Z. L.; Yao, Y.; Chen, J.; Mai, L. Q. Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy 2018, 54, 360–366.

[21]

Shen, T.; Luo, C. Z.; Hao, Y.; Chen, Y. Magnesiophilic interface of 3D MoSe2 for reduced Mg anode overpotential. Front. Chem. 2020, 8, 544013.

[22]

Ding, Y. Y.; Chen, D.; Ren, X.; Cao, Y. L.; Xu, F. Organic-conjugated polyanthraquinonylimide cathodes for rechargeable magnesium batteries. J. Mater. Chem. A 2022, 10, 14111–14120.

[23]

Yan, H.; Mu, X. J.; Song, Y.; Qin, Z. M.; Guo, D.; Sun, X. Q.; Liu, X. X. Protonating imine sites of polyaniline for aqueous zinc batteries. Chem. Commun. 2022, 58, 1693–1696.

[24]

Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi D. C. Polyaniline as an electrode material for magnesium reserve battery. Synth. Met. 1996, 80, 279–282.

[25]

Luo, P.; Xiao, Y.; Yang, J.; Zuo, C. L.; Xiong, F. Y.; Tang, C.; Liu, G. Y.; Zhang, W. W.; Tang, W.; Wang, S. Y. et al. Polyaniline nanoarrays/carbon cloth as binder-free and flexible cathode for magnesium ion batteries. Chem. Eng. J. 2022, 433, 133772.

[26]

Tang, J. J.; Xu, F. Polyaniline cathode for dual-ion rechargeable Mg batteries. Mater. Lett. 2022, 320, 132365.

[27]

Zhou, L. M.; Liu, Q.; Zhang, Z. H.; Zhang, K.; Xiong, F. Y.; Tan, S. S.; An, Q. Y.; Kang, Y. M.; Zhou, Z.; Mai, L. Q. Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 2018, 30, 1801984.

[28]

Pei, C. Y.; Yin, Y. M.; Sun, R. M.; Xiong, F. Y.; Liao, X. B.; Tang, H.; Tan, S. S.; Zhao, Y.; An, Q. Y.; Mai, L. Q. Interchain-expanded vanadium tetrasulfide with fast kinetics for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2019, 11, 31954–31961.

[29]

Dong, H.; Liang, Y. L.; Tutusaus, O.; Mohtadi, R.; Zhang, Y.; Hao, F.; Yao, Y. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 2019, 3, 782–793.

[30]

Huang, D.; Tan, S. S.; Li, M. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. Q. Highly efficient non-nucleophilic Mg(CF3SO3)2-based electrolyte for high-power Mg/S battery. ACS Appl. Mater. Interfaces 2020, 12, 17474–17480.

[31]

Wang, F.; Hua, H. M.; Wu, D. Z.; Li, J. L.; Xu, Y. Q.; Nie, X. Z.; Zhuang, Y. C.; Zeng, J.; Zhao, J. B. Solvent molecule design enables excellent charge transfer kinetics for a magnesium metal anode. ACS Energy Lett. 2023, 8, 780–789.

[32]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[33]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[34]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

[35]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[36]

Singh, R.; Choudhary, R. B. Optical absorbance and ohmic behavior of PANI and PANI/ZnO nanocomposites for solar cell application. Optik 2016, 127, 11398–11405.

[37]

Zhao, Z. G.; Yu, T. T.; Miao, Y. C.; Zhao, X. Y. Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery. Electrochim. Acta 2018, 270, 30–36.

[38]

Han, C. L.; Ye, Y. L.; Wang, G. W.; Hong, W.; Feng, C. H. Selective electro-oxidation of phenol to benzoquinone/hydroquinone on polyaniline enhances capacitance and cycling stability of polyaniline electrodes. Chem. Eng. J. 2018, 347, 648–659.

[39]

Souza, F. G.; Pinto, J. C.; Rodrigues, M. V.; Anzai, T. K.; Richa, P.; Melo, P. A.; Nele, M.; Oliveira, G. E.; Soares, B. G. New polyaniline/polycardanol conductive blends characterized by FTIR, NIR, and XPS. Polym. Eng. Sci. 2008, 48, 1947–1952.

[40]

Zhang, J. J.; Xu, Y. H.; Fan, L.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Graphene-encapsulated selenium/polyaniline core–shell nanowires with enhanced electrochemical performance for Li-Se batteries. Nano Energy 2015, 13, 592–600.

[41]

Zhou, X. M.; Liu, Y.; Du, C. Y.; Ren, Y.; Mu, T. S.; Zuo, P. J.; Yin, G. P.; Ma, Y. L.; Cheng, X. Q.; Gao, Y. Z. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. J. Power Sources 2018, 381, 156–163.

[42]

Luo, P.; Huang, Z.; Zhang, W. W.; Liu, C.; Liu, G. Y.; Huang, M.; Xiao, Y.; Luo, H. Y.; Qu, Z.; Dong, S. J. et al. Incorporating near-pseudocapacitance insertion Ni/Co-based hexacyanoferrate and low-cost metallic Zn for aqueous K-ion batteries. ChemSusChem 2022, 15, e202200706.

[43]

Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

[44]

Lüder, J.; Manzhos, S. First-principle insights into molecular design for high-voltage organic electrode materials for Mg based batteries. Front. Chem. 2020, 8, 489209.

[45]

Zuo, C. L.; Chao, F. Y.; Li, M.; Dai, Y. H.; Wang, J. J.; Xiong, F. Y.; Jiang, Y. L.; An, Q. Y. Improving Ca-ion storage dynamic and stability by interlayer engineering and Mn-dissolution limitation based on robust MnO2@PANI hybrid cathode. Adv. Energy Mater. 2023, 13, 2301014.

[46]

Dimitriev, O. P. Origin of the exciton transition shift in thin films of polyaniline. Synth. Met. 2001, 125, 359–363.

[47]

Wang, S.; Huang, S.; Yao, M. J.; Zhang, Y.; Niu, Z. Q. Engineering active sites of polyaniline for AlCl2+ storage in an aluminum-ion battery. Angew. Chem., Int. Ed. 2020, 59, 11800–11807.

[48]

Long, J. C.; Tan, S. S.; Wang, J. J.; Xiong, F. Y.; Cui, L. M.; An, Q. Y.; Mai, L. Q. Revealing the interfacial chemistry of fluoride alkyl magnesium salts in magnesium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202301934.

Nano Research
Pages 6168-6175
Cite this article:
Luo P, Chao F, Zuo C, et al. Improving discharge voltage and ion storage dynamic in polyaniline via modulation of carrier charge density for magnesium-metal batteries. Nano Research, 2024, 17(7): 6168-6175. https://doi.org/10.1007/s12274-024-6615-4
Topics:

613

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 23 December 2023
Revised: 03 March 2024
Accepted: 10 March 2024
Published: 15 April 2024
© Tsinghua University Press 2024
Return