AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Micromechanical interlocking-inspired dendritic porous silica-based multimodal resin composites for the tooth restoration

Hongyan Chen1,2,§Junjun Wang1,§Shi Yin2Ruili Wang1( )Xinquan Jiang2Meifang Zhu1
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

§ Hongyan Chen and Junjun Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Porous silica particles have shown great potential application as reinforcing fillers in the field of dentistry due to their ability to construct the micromechanical interlocking effect at filler-matrix interface. However, how to accurately regulate the pore structure, especially the pore size, to increase the degree of the micromechanical interlocking and the performance of materials remains a challenge. Herein, we have proposed a facile self-assembly process to synthesize dendritic porous silica with tunable pore sizes (DPS-x) by adjusting the chain-length of the alcohols in the microemulsion. The mechanism of nucleation-growth is further put forward. The results indicate that the pore size of DPS-x indeed affects the mechanical property of composites, where the DPS-pen particles with intermediate pore size are chosen as the optimal reinforcing fillers. The bimodal and multimodal filler formulations are further established to address the loading limitation of unimodal DPS-pen (46 wt%). In virtue of the close-packed structure of identical spheres, the particle sizes of secondary silica embedded into the maximally loaded bimodal D3S7 composite (DPS-pen:Si430 = 30:70, wt/wt) are theoretically calculated without trials. Among all formulations, the developed multimodal D3S7+Si178+Si90 filler exhibits superior mechanical properties, the lowest shrinkage, and high polymerization conversion for dental composites, along with satisfied waster sorption and solubility, and good biocompatibility in vitro and in vivo, which are comparable to commercial composite Z350 XT (3M, USA). These DPS-x particles and their multimodal fillers can also be applied to other polymer-based biomaterials.

Electronic Supplementary Material

Download File(s)
6616_ESM.pdf (401 KB)

References

[1]

Benzian, H.; Daar, A.; Naidoo, S. Redefining the non-communicable disease framework to a 6 × 6 approach: Incorporating oral diseases and sugars. Lancet Public Health 2023, 8, e899–e904.

[2]

Peres, M. A.; Macpherson, L. M. D.; Weyant, R. J.; Daly, B.; Venturelli, R.; Mathur, M. R.; Listl, S.; Celeste, R. K.; Guarnizo-Herreño, C. C.; Kearns, C. et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260.

[3]

Zhang, L. S.; Ma, Z. Y.; Wang, R. L.; Zuo, W. W.; Zhu, M. F. Bis-Quaternary ammonium betulin-based dimethacrylate: Synthesis, characterization, and application in dental restorative resins. Mater. Adv. 2023, 4, 2127–2137.

[4]

Bernabe, E.; Marcenes, W.; Hernandez, C. R.; Bailey, J.; Abreu, L. G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; Arora, A. et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: A systematic analysis for the global burden of disease 2017 study. J. Dent. Res. 2020, 99, 362–373.

[5]

Yu, Y.; You, Y.; Yi, L. Y.; Wu, X. Y.; Zhao, Y. N.; Yu, J.; Liu, H.; Shen, Y.; Guo, J. M.; Huang, C. Dental plaque-inspired versatile nanosystem for caries prevention and tooth restoration. Bioact. Mater. 2023, 20, 418–433.

[6]

Pitts, N. B.; Zero, D. T.; Marsh, P. D.; Ekstrand, K.; Weintraub, J. A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030.

[7]

Aminoroaya, A.; Neisiany, R. E.; Khorasani, S. N.; Panahi, P.; Das, O.; Madry, H.; Cucchiarini, M.; Ramakrishna, S. A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Compos. B Eng. 2021, 216, 108852.

[8]

Wang, R. L.; Li, Z. H.; Tian, Q. Y.; Ma, Z. Y.; Zhu, M. F. Making graphene oxide (GO)-cladded SiO2 spheres (SiO2@GO) as inorganic fillers for dental restorative resin composites. Dent. Mater. 2023, 39, 1076–1084.

[9]

Montoya, C.; Roldan, L.; Yu, M.; Valliani, S.; Ta, C.; Yang, M. B.; Orrego, S. Smart dental materials for antimicrobial applications. Bioact. Mater. 2023, 24, 1–19.

[10]

Xu, X. Y.; He, L. B.; Zhu, B. G.; Li, J. Y.; Li, J. S. Advances in polymeric materials for dental applications. Polym. Chem. 2017, 8, 807–823.

[11]

Chen, H. Y.; Wang, J. J.; Wang, R. L.; Zhu, M. F. Synthesis of fluorinated urchin-like serried hydroxyapatite with improved water sorption-solubility and bioactivity for dental composites. Chem. Res. Chin. Univ. 2021, 37, 1092–1100.

[12]

Chen, H. Y.; Wang, R. L.; Qian, L.; Liu, H. M.; Wang, J. X.; Zhu, M. F. Surface modification of urchin-like serried hydroxyapatite with sol-gel method and its application in dental composites. Compos. B Eng. 2020, 182, 107621.

[13]

Cho, K.; Yasir, M.; Jung, M.; Willcox, M. D. P.; Stenzel, M. H.; Rajan, G.; Farrar, P.; Prusty, B. G. Hybrid engineered dental composites by multiscale reinforcements with chitosan-integrated halloysite nanotubes and S-glass fibers. Compos. B Eng. 2020, 202, 108448.

[14]

Naguib, G. H.; Nassar, H. M.; Hamed, M. T. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioact. Mater. 2022, 8, 49–56.

[15]

Chen, H. Y.; Wang, R. L.; Qian, L.; Ren, Q. Y.; Jiang, X. Z.; Zhu, M. F. Dental restorative resin composites: Modification technologies for the matrix/filler interface. Macromol. Mater. Eng. 2018, 303, 1800264.

[16]

Lei, H.; Ma, Q.; Li, W. F.; Wen, J.; Ma, H. B.; Qin, M.; Wang, W.; Cao, Y. An ester bond underlies the mechanical strength of a pathogen surface protein. Nat. Commun. 2021, 12, 5082.

[17]

Wilmers, J.; Bargmann, S. Nature’s design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater. 2020, 107, 1–24.

[18]

Zhang, S. N.; Wang, X.; Yang, J. W.; Chen, H. Y.; Jiang, X. Q. Micromechanical interlocking structure at the filler/resin interface for dental composites: A review. Int. J. Oral Sci. 2023, 15, 21.

[19]

Zhu, M.; Zhang, F. L.; Chen, X. D. Bioinspired mechanically interlocking structures. Small Struct. 2020, 1, 2000045.

[20]

Bowen, R. L.; Reed, L. E. Semiporous reinforcing fillers for composite resins: I. Preparation of provisional glass formulations. J. Dent. Res. 1976, 55, 738–747.

[21]

Bowen, R. L.; Reed, L. E. Semiporous reinforcing fillers for composite, resins: II. Heat treatments and etching characteristics. J. Dent. Res . 1976, 55, 748–756.

[22]

Zhang, Y.; Huang, C.; Chang, J. Ca-doped mesoporous SiO2/dental resin composites with enhanced mechanical properties, bioactivity and antibacterial properties. J. Mater. Chem. B 2018, 6, 477–486.

[23]

Farjadian, F.; Roointan, A.; Mohammadi-Samani, S.; Hosseini, M. Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem. Eng. J. 2019, 359, 684–705.

[24]

Bai, X. X.; Lin, C. C.; Wang, Y. Y.; Ma, J.; Wang, X.; Yao, X. H.; Tang, B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent. Mater. 2020, 36, 794–807.

[25]

Liu, J. N.; Zhang, H.; Sun, H. J.; Liu, Y. R.; Liu, W. L.; Su, B.; Li, S. B. The development of filler morphology in dental resin composites: A review. Materials 2021, 14, 5612.

[26]

Liu, Y.; Tan, Y. N.; Lei, T.; Xiang, Q. J.; Han, Y. J.; Huang, B. Y. Effect of porous glass-ceramic fillers on mechanical properties of light-cured dental resin composites. Dent. Mater. 2009, 25, 709–715.

[27]

Atai, M.; Pahlavan, A.; Moin, N. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent. Mater. 2012, 28, 133–145.

[28]

Ji, X. L.; Hampsey, J. E.; Hu, Q. Y.; He, J. B.; Yang, Z. Z.; Lu, Y. F. Mesoporous silica-reinforced polymer nanocomposites. Chem. Mater. 2003, 15, 3656–3662.

[29]

Samuel, S. P.; Li, S. X.; Mukherjee, I.; Guo, Y.; Patel, A. C.; Baran, G.; Wei, Y. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent. Mater. 2009, 25, 296–301.

[30]

Wang, R. L.; Habib, E.; Zhu, X. X. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites. Dent. Mater. 2017, 33, 1139–1148.

[31]

Chen, H. Y.; Wang, R. L.; Zhang, J. D.; Hua, H. F.; Zhu, M. F. Synthesis of core-shell structured ZnO@m-SiO2 with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dent. Mater. 2018, 34, 1846–1855.

[32]

Chen, H. Y.; Liu, H. M.; Wang, R. L.; Jiang, X. Z.; Zhu, M. F. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dent. Mater. 2021, 37, 961–971.

[33]

Klapdohr, S.; Moszner, N. New inorganic components for dental filling composites. Monatsh. Chem. 2005, 136, 21–45.

[34]

Wang, R. L.; Habib, E.; Zhu, X. X. Application of close-packed structures in dental resin composites. Dent. Mater. 2017, 33, 288–293.

[35]

Wang, R. L.; Habib, E.; Zhu, X. X. Evaluation of the filler packing structures in dental resin composites: From theory to practice. Dent. Mater. 2018, 34, 1014–1023.

[36]

Wang, R. L.; Bao, S.; Liu, F. W.; Jiang, X. Z.; Zhang, Q. H.; Sun, B.; Zhu, M. F. Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers. Mater. Sci. Eng. C 2013, 33, 4759–4766.

[37]

Wang, R. L.; Zhang, M. L.; Liu, F. W.; Bao, S.; Wu, T. T.; Jiang, X. Z.; Zhang, Q. H.; Zhu, M. F. Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Mater. Sci. Eng. C 2015, 50, 266–273.

[38]

Zhang, S. N.; Wang, X.; Yin, S.; Wang, J. J.; Chen, H. Y.; Jiang, X. Q. Urchin-like multiscale structured fluorinated hydroxyapatite as versatile filler for caries restoration dental resin composites. Bioact. Mater. 2024, 35, 477–494.

[39]

Hu, D.; Tian, T.; Ren, Q.; Han, S. L.; Li, Z. C.; Deng, Y. D.; Lu, Z. Q.; Zhang, L. L. Novel biomimetic peptide-loaded chitosan nanoparticles improve dentin bonding via promoting dentin remineralization and inhibiting endogenous matrix metalloproteinases. Dent. Mater. 2024, 40, 160–172.

[40]

Chen, H. Y.; Wei, S. Q.; Wang, R. L.; Zhu, M. F. Improving the physical-mechanical property of dental composites by grafting methacrylate-polyhedral oligomeric silsesquioxane onto a filler surface. ACS Biomater. Sci. Eng. 2021, 7, 1428–1437.

[41]

Habib, E.; Wang, R. L.; Zhu, X. X. Monodisperse silica-filled composite restoratives mechanical and light transmission properties. Dent. Mater. 2017, 33, 280–287.

[42]
ISO 4049:2019. Dentistry-polymer-based restorative materials. International Organization for Standardization, 2019.
[43]

Xi, L.; Zhang, C. Y.; Tuxun, H.; Zhang, B. B.; Ji, M.; Zhou, X. L.; Liang, W. Q.; Li, J. Y.; Chen, H.; Li, J. P. et al. Surface plasmon assisted preparation of X1-type Y2SiO5: Eu3+-Au luminescent crystals. Nanoscale 2023, 15, 12333–12339.

[44]

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2012, 14, 923–932.

[45]

Mikolei, J. J.; Richter, D.; Pardehkhorram, R.; Helbrecht, C.; Schabel, S.; Meckel, T.; Biesalski, M.; Ceolin, M.; Andrieu-Brunsen, A. Nanoscale pores introduced into paper via mesoporous silica coatings using sol-gel chemistry. Nanoscale 2023, 15, 9094–9105.

[46]

Xiong, L.; Du, X.; Shi, B. Y.; Bi, J. X.; Kleitz, F.; Qiao, S. Z. Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. J. Mater. Chem. B 2015, 3, 1712–1721.

[47]

Du, X.; He, J. H. Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers. Nanoscale 2012, 4, 852–859.

[48]

Yu, Y. J.; Xing, J. L.; Pang, J. L.; Jiang, S. H.; Lam, K. F.; Yang, T. Q.; Xue, Q. S.; Zhang, K.; Wu, P. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 22655–22665.

[49]

Das, S.; Samanta, A.; Jana, S. Light-driven synthesis of uniform dandelion-like mesoporous silica nanoflowers with tunable surface area for carbon dioxide uptake. Chem. Eng. J. 2019, 374, 1118–1126.

[50]

Du, X.; Qiao, S. Z. Dendritic silica particles with center-radial pore channels: Promising platforms for catalysis and biomedical applications. Small 2015, 11, 392–413.

[51]

Sun, Z. X.; Zhang, Q.; Lu, Y. H.; Li, Y. L. Synthesis of mesoporous ZnS nanoparticles with enlargeable pore size through a co-template approach. Microporous Mesoporous Mater. 2008, 109, 376–382.

[52]

Chen, H. Y.; Luo, J. X.; Yang, J. W.; Zeng, C.; Jiang, X. Q. Synthesis of pore-size-tunable porous silica particles and their effects on dental resin composites. Biomolecules 2023, 13, 1290.

[53]
Callister, W. D.; Rethwisch, D. G. The structure of crystalline solids. In Materials Science and Engineering: An Introduction; 10th ed. Callister, W. D. Jr.; Rethwisch, D. G., Eds.; John Wiley & Sons, Inc: New York, 2018; pp 48–91.
[54]

Habib, E.; Wang, R. L.; Zhu, X. X. Correlation of resin viscosity and monomer conversion to filler particle size in dental composites. Dent. Mater. 2018, 34, 1501–1508.

[55]

Habib, E.; Zhu, X. X. Photo-calorimetry method optimization for the study of light-initiated radical polymerization of dental resins. Polymer 2018, 135, 178–184.

[56]

Metalwala, Z.; Khoshroo, K.; Rasoulianboroujeni, M.; Tahriri, M.; Johnson, A.; Baeten, J.; Fahimipour, F.; Ibrahim, M.; Tayebi, L. Rheological properties of contemporary nanohybrid dental resin composites: The influence of preheating. Polym. Test. 2018, 72, 157–163.

[57]

Vyas, A.; Garg, V.; Ghosh, S. B.; Bandyopadhyay-Ghosh, S. Photopolymerizable resin-based 3D printed biomedical composites: Factors affecting resin viscosity. Mater. Today Proc. 2022, 62, 1435–1439.

[58]

Joseph, R.; McGregor, W. J.; Martyn, M. T.; Tanner, K. E.; Coates, P. D. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites. Biomaterials 2002, 23, 4295–4302.

[59]

Loumprinis, N.; Maier, E.; Belli, R.; Petschelt, A.; Eliades, G.; Lohbauer, U. Viscosity and stickiness of dental resin composites at elevated temperatures. Dent. Mater. 2021, 37, 413–422.

[60]

Cai, L. F.; Fan, J. F.; Ding, S. C.; He, D. Y.; Zeng, X. L.; Sun, R.; Ren, L. L.; Xu, J. B.; Zeng, X. L. Soft composite gels with high toughness and low thermal resistance through lengthening polymer strands and controlling filler. Adv. Funct. Mater. 2023, 33, 2207143.

[61]

Wang, D.; Liu, D. Y.; Xu, J. H.; Fu, J. J.; Wu, K. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy. Mater. Horiz. 2022, 9, 640–652.

[62]

Zhong, H. Y.; Hu, H. L.; Ni, B.; Guo, Y.; Luo, Z. H.; Zhao, T.; Zhang, B. X. Silica sol nanoparticles hybridized allyl phenolic resins for improving mechanical and thermal performance. Polymer 2022, 254, 125052.

[63]

Karnati, S. R.; Agbo, P.; Zhang, L. F. Applications of silica nanoparticles in glass/carbon fiber-reinforced epoxy nanocomposite. Compos. Commun. 2020, 17, 32–41.

[64]

Algamaiah, H.; Silikas, N.; Watts, D. C. Polymerization shrinkage and shrinkage stress development in ultra-rapid photo-polymerized bulk fill resin composites. Dent. Mater. 2021, 37, 559–567.

[65]

Garoushi, S.; Vallittu, P. K.; Watts, D. C.; Lassila, L. V. J. Effect of nanofiller fractions and temperature on polymerization shrinkage on glass fiber reinforced filling material. Dent. Mater. 2008, 24, 606–610.

[66]

Zhao, M. L.; Geng, Y. N.; Fan, S. N.; Yao, X.; Zhu, M. F.; Zhang, Y. P. 3D-printed strong hybrid materials with low shrinkage for dental restoration. Compos. Sci. Technol. 2021, 213, 108902.

[67]

Wang, Y. Z.; Hua, H. F.; Yu, Y. J.; Chen, G. Y.; Zhu, M. F.; Zhu, X. X. Dental resin composites reinforced by rough core-shell SiO2 nanoparticles with a controllable mesoporous structure. ACS Appl. Bio Mater. 2019, 2, 4233–4241.

[68]

Yang, D. L.; Sun, Q.; Niu, H.; Wang, R. L.; Wang, D.; Wang, J. X. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: Effects of heat treatment and filler composition. Compos. B Eng. 2020, 186, 107791.

[69]

Bapat, R. A.; Parolia, A.; Chaubal, T.; Dharamadhikari, S.; Abdulla, A. M.; Sakkir, N.; Arora, S.; Bapat, P.; Sindi, A. M.; Kesharwani, P. Recent update on potential cytotoxicity, biocompatibility and preventive measures of biomaterials used in dentistry. Biomater. Sci. 2021, 9, 3244–3283.

[70]

Attik, N.; Hallay, F.; Bois, L.; Brioude, A.; Grosgogeat, B.; Colon, P. Mesoporous silica fillers and resin composition effect on dental composites cytocompatibility. Dent. Mater. 2017, 33, 166–174.

[71]

Kang, H. M.; Han, M. R.; Xue, J.; Baek, Y.; Chang, J.; Hu, S.; Nam, H.; Jo, M. J.; El Fakhri, G.; Hutchens, M. P. et al. Renal clearable nanochelators for iron overload therapy. Nat. Commun. 2019, 10, 5134.

Nano Research
Cite this article:
Chen H, Wang J, Yin S, et al. Micromechanical interlocking-inspired dendritic porous silica-based multimodal resin composites for the tooth restoration. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6616-3
Topics:
Part of a topical collection:

594

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 03 January 2024
Revised: 23 February 2024
Accepted: 11 March 2024
Published: 04 April 2024
© Tsinghua University Press 2024
Return