Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Highly crystallization-induced emissive luminophores with mechanoluminescent features for two-photon harvesting fluorescence imaging and latent fingerprint identification

Jian Lu1,2Juan Gao1,2Rui-Xuan Qian1,2Shuai-Hua Wang1,2Fa-Kun Zheng1,2()Guo-Cong Guo2()
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Show Author Information

Graphical Abstract

View original image Download original image
This crystallization-induced mechanoluminescent luminophore has exhibited charming two-photon harvesting properties, which showed great potential in high-resolution latent fingerprint recognition for authority identification.

Abstract

Fluorescence imaging can be employed in fields of medical treatment, astronomical exploration, and national defense security. Traditional fluorescence imaging often takes the single-photon techniques, which is vulnerable to background interference and photobleaching. Remedially, two-photon fluorescence imaging can achieve much higher-resolution fluorescence imaging for reducing scattering and deeper depth. Hence, by assembling the tetraphenylethylene backbones with nontoxic and non-noble K+ ions, compound 1 ([(Hdma)K(H2ettc)]n, H4ettc = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carboxylic acid))) with the crystallization-induced emissions exhibited charming fluorescence imaging under two-photon excitation microscopy (TPEM). Besides, luminescent powders based on compound 1 can achieve high-resolution fingerprint recognition, providing secure access control and identification for a novel authentication method. Compared with the commercial fluorescent dyes coumarin-6, the as-synthesized compound 1 showed great solvent stability, indicating its durability against harsh environment. Moreover, compound 1 shows mechanoluminescent properties for the perturbation of weak supramolecular interactions within ordered arrangements of the H2ettc2− ligands. This novel compound has provided an important insight to the development of two-photon fluorescence imaging and advanced external-stimuli responsive materials.

Electronic Supplementary Material

Download File(s)
6618_ESM.pdf (2.5 MB)

References

[1]

Yoon, S.; Kim, M.; Jang, M.; Choi, Y.; Choi, W.; Kang, S.; Choi, W. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2020, 2, 141–158.

[2]

Chen, N.; Zhang, X. M.; Xi, J.; Yang, Y. B.; Yuan, Q. Recent advances of microbial metabolism analysis: From metabolic molecules to environments. Sci. China Chem. 2023, 66, 2941–2950.

[3]

Yu, B. J.; Liu, S. D.; Xie, W. H.; Pan, P. P.; Zhou, P.; Zou, Y. D.; Yue, Q.; Deng, Y. H. Versatile core–shell magnetic fluorescent mesoporous microspheres for multilevel latent fingerprints magneto-optic information recognition. InfoMat 2022, 4, e12289.

[4]

Schäferling, M. The art of fluorescence imaging with chemical sensors. Angew. Chem., Int. Ed. 2012, 51, 3532–3554.

[5]

Chen, N.; Cheng, D.; He, T. P.; Yuan, Q. Real-time monitoring of dynamic chemical processes in microbial metabolism with optical sensors. Chin. J. Chem. 2023, 41, 1836–1840.

[6]

Han, B. Y.; Li, D.; Lei, X. S.; Liu, Q. D.; Chen, Y. J.; Yan, Q. F.; Wang, J.; He, G. H. H2O brace molecules to slip stack: Transform ACQ to AIE for latent fingerprints recognition. Chem. Eng. J. 2022, 450, 137933.

[7]

Liu, J. Q.; Li, X. L.; Han, Y. D.; Wu, J. B.; Zhang, X.; Wang, Z. P.; Xu, Y. Synergetic effect of tetraethylammonium bromide addition on the morphology evolution and enhanced photoluminescence of rare-earth metal-organic frameworks. Inorg. Chem. 2020, 59, 14318–14325.

[8]

Li, S. F.; Wang, L.; Ma, Y. Y.; Zhu, L. L.; Lin, W. Y. A multifunctional fluorescent molecule with AIE characteristics for SO2 derivatives detection, fluorescence ink and latent fingerprint imaging. Sens. Actuat. B: Chem. 2022, 371, 132595.

[9]

Wang, Y. L.; Li, C.; Qu, H. Q.; Fan, C.; Zhao, P. J.; Tian, R.; Zhu, M. Q. Real-time fluorescence in situ visualization of latent fingerprints exceeding Level 3 details based on aggregation-induced emission. J. Am. Chem. Soc. 2020, 142, 7497–7505.

[10]

Wang, M.; Li, M.; Yang, M. Y.; Zhang, X. M.; Yu, A. Y.; Zhu, Y.; Qiu, P. H.; Mao, C. B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state. Nano Res. 2015, 8, 1800–1810.

[11]

Li, P.; Li, H. R. Recent progress in the lanthanide-complexes based luminescent hybrid materials. Coord. Chem. Rev. 2021, 441, 213988.

[12]

Prabakaran, E.; Pillay, K. Nanomaterials for latent fingerprint detection: A review. J. Mater. Res. Technol. 2021, 12, 1856–1885.

[13]

Ma, K. X.; Li, J.; Ma, H. Y.; Yang, Y.; Yang, H.; Lu, J.; Li, Y. W.; Dou, J. M.; Wang, S. N.; Liu, S. J. 2D Cd-MOF and its mixed-matrix membranes for luminescence sensing antibiotics in various aqueous systems and visible fingerprint identifying. Chin. Chem. Lett. 2023, 34, 108227.

[14]

Wang, Y. Q.; Wang, J.; Ma, Q. Q.; Li, Z. H.; Yuan, Q. Recent progress in background-free latent fingerprint imaging. Nano Res. 2018, 11, 5499–5518.

[15]

Li, Z. H.; Wang, Q.; Wang, Y. Q.; Ma, Q. Q.; Wang, J.; Li, Z. H.; Li, Y. X.; Lv, X. B.; Wei, W.; Chen, L. et al. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 2018, 11, 6167–6176.

[16]

Peng, D.; He, S. A.; Zhang, Y. Y.; Yao, L. Q.; Nie, W. D.; Liao, Z. J.; Cai, W. T.; Ye, X. Y. Blue light-induced rare-earth free phosphors for the highly sensitive and selective imaging of latent fingerprints based on enhanced hydrophobic interaction. J. Materiom. 2022, 8, 229–238.

[17]

Chen, Y.; Wang, S.; Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 2023, 1, 60–78.

[18]

Wu, J. J.; Guo, Y.; Qi, J. L.; Yao, W. D.; Yu, S. X.; Liu, W. L.; Guo, S. P. Multi-stimuli responsive luminescence and domino phase transition of hybrid copper halides with nonlinear optical switching behavior. Angew. Chem., Int. Ed. 2023, 62, e202301937.

[19]

Wu, J. J.; Qi, J. L.; Guo, Y.; Yan, S. F.; Liu, W. L.; Guo, S. P. Reversible tri-state structural transitions of hybrid copper(I) bromides toward tunable multiple emissions. Inorg. Chem. Front. 2024, 11, 156–163

[20]

Juvekar, V.; Park, S. J.; Yoon, J.; Kim, H. M. Recent progress in the two-photon fluorescent probes for metal ions. Coord. Chem. Rev. 2021, 427, 213574.

[21]

Zhang, Q.; Xiao, Y. Z.; Su, M. Q.; Zhang, P.; Gong, Y. L.; Ding, C. F. Two-photon background-free fluorescence assay for glutathione over cysteine and homocysteine in vitro and vivo. Chem. Commun. 2020, 56, 6380–6383.

[22]

Chen, B.; Feng, G. X.; He, B. R.; Goh, C.; Xu, S. D.; Ramos-Ortiz, G.; Aparicio-Ixta, L.; Zhou, J.; Ng, L.; Zhao, Z. J. et al. Silole-based red fluorescent organic dots for bright two-photon fluorescence in vitro cell and in vivo blood vessel imaging. Small 2016, 12, 782–792.

[23]

Lu, J.; Zhao, X. H.; Bai, B.; Zheng, F. K.; Guo, G. C. Significant enhancement of cathode-ray scintillation for a conductive Bi-SMOF via in situ partial rare earth ion replacement. J. Mater. Chem. C 2019, 7, 11099–11103.

[24]

Zhu, Z. H.; Bi, C. J.; Zou, H. H.; Feng, G. X.; Xu, S. P.; Tang, B. Z. Smart tetraphenylethene-based luminescent metal-organic frameworks with amide-assisted thermofluorochromics and piezofluorochromics. Adv. Sci. (Weinh.) 2022, 9, 2200850.

[25]

Ding, D. H.; Li, J. F.; Xu, L. Z.; Wang, J. Y.; Tan, D.; Lin, W. Y. Development of an activatable hydrogen sulfide-specific two-photon fluorescent probe for bioimaging in an air pouch inflammation model. J. Mater. Chem. B 2022, 10, 4568–4574.

[26]

Shaya, J.; Corridon, P. R.; Al-Omari, B.; Aoudi, A.; Shunnar, A.; Mohideen, M. I. H.; Qurashi, A.; Michel, B. Y.; Burger, A. Design, photophysical properties, and applications of fluorene-based fluorophores in two-photon fluorescence bioimaging: A review. J. Photochem. Photobiol. C: Photochem. Rev. 2022, 52, 100529.

[27]

Benkowska-Biernacka, D.; Mucha, S. G.; Firlej, L.; Formalik, F.; Bantignies, J. L.; Anglaret, E.; Samoć, M.; Matczyszyn, K. Strongly emitting folic acid-derived carbon nanodots for one- and two-photon imaging of lyotropic myelin figures. ACS Appl. Mater. Interfaces 2023, 15, 32717–32731.

[28]

Li, X.; Li, Z.; Yang, Y. W. Tetraphenylethylene-interweaving conjugated macrocycle polymer materials as two-photon fluorescence sensors for metal Ions and organic molecules. Adv. Mater. 2018, 30, 1800177.

[29]

Li, H. B. Feature extraction, recognition, and matching of damaged fingerprint: Application of deep learning network. Concurr. Comput. 2021, 33, e6057.

[30]

Wang, S. C.; Zhang, Q. S.; Wang, Z.; Zheng, L.; Zhang, X. D.; Fan, Y. N.; Fu, P. Y.; Xiong, X. H.; Pan, M. One and two-photon excited fluorescence optimization of metal-organic frameworks with symmetry-reduced AIEgen-ligand. Angew. Chem., Int. Ed. 2022, 61, e202211356.

[31]

Suzuki, Y.; Tohnai, N.; Hisaki, I. Triaxially woven hydrogen-bonded chicken wires of a tetrakis(carboxybiphenyl)ethene. Chem.—Eur. J. 2020, 26, 17056–17062.

[32]

Lu, J.; Wu, H. F.; Wang, W. F.; Xu, J. G.; Zheng, F. K.; Guo, G. C. Calcium-based efficient cathode-ray scintillating metal-organic frameworks constructed from π-conjugated luminescent motifs. Chem. Commun. 2019, 55, 13816–13819.

[33]

Wang, F. M.; Liu, W.; Teat, S. J.; Xu, F.; Wang, H.; Wang, X. L.; An, L. T.; Li, J. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors. Chem. Commun. 2016, 52, 10249–10252.

[34]

Zhao, L. Y.; Liu, Y. M.; Xing, R. R.; Yan, X. H. Supramolecular photothermal effects: A promising mechanism for efficient thermal conversion. Angew. Chem., Int. Ed. 2020, 59, 3793–3801.

[35]

Qi, Q. K.; Qian, J. Y.; Tan, X.; Zhang, J. B.; Wang, L. J.; Xu, B.; Zou, B.; Tian, W. J. Remarkable turn-on and color-tuned piezochromic luminescence: Mechanically switching intramolecular charge transfer in molecular crystals. Adv. Funct. Mater. 2015, 25, 4005–4010.

[36]

Yan, Y.; Chen, J.; Zhang, N. N.; Wang, M. S.; Sun, C.; Xing, X. S.; Li, R.; Xu, J. G.; Zheng, F. K.; Guo, G. C. Grinding size-dependent mechanoresponsive luminescent Cd(II) coordination polymer. Dalton Trans. 2016, 45, 18074–18078.

[37]

Lu, J.; Gao, J.; Wang, S. H.; Xie, M. J.; Li, B. Y.; Wang, W. F.; Mi, J. R.; Zheng, F. K.; Guo, G. C. Improving X-ray scintillating merits of zero-dimensional organic-manganese(II) halide hybrids via enhancing the ligand polarizability for high-resolution imaging. Nano Lett. 2023, 23, 4351–4358.

Nano Research
Pages 6475-6482
Cite this article:
Lu J, Gao J, Qian R-X, et al. Highly crystallization-induced emissive luminophores with mechanoluminescent features for two-photon harvesting fluorescence imaging and latent fingerprint identification. Nano Research, 2024, 17(7): 6475-6482. https://doi.org/10.1007/s12274-024-6618-1
Topics:
Metrics & Citations  
Article History
Copyright
Return