Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Zirconium terephthalate UiO-66 has aroused great interest in catalysis since it exhibits significant flexibility and compatibility for accommodating a high number of defects as well as exceptional thermal and chemical stability. Until now, many works have focused on the modulations of the Zr6-oxo clusters in UiO-66 in terms of diverse synthesis, advanced characterizations, and their catalytic applications. To achieve high catalytic efficiency, it is still highly desired for rationally constructing and modulating the Zr6-oxo clusters with exposed catalytic sites and diverse microenvironments for advanced catalysis. In this review, we provide a comprehensive summary of recent progress on the synthesis of defective UiO-66, qualitative and quantitative characterizations, as well as a logical overview of heterogeneous catalytic applications over the past few years. Finally, the outlooks for the research paradigm of defective UiO-66 are discussed.
Campos, K. R.; Coleman, P. J.; Alvarez, J. C.; Dreher, S. D.; Garbaccio, R. M.; Terrett, N. K.; Tillyer, R. D.; Truppo, M. D.; Parmee, E. R. The importance of synthetic chemistry in the pharmaceutical industry. Science 2019, 363, eaat0805.
Ni, L.; Yu, C.; Wei, Q. B.; Liu, D. M.; Qiu, J. S. Pickering emulsion catalysis: Interfacial chemistry, catalyst design, challenges, and perspectives. Angew. Chem., Int. Ed. 2022, 61, e202115885.
Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. Angew. Chem., Int. Ed. 2016, 55, 7296–7343.
Egorova, K. S.; Ananikov, V. P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem., Int. Ed. 2016, 55, 12150–12162.
Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar- versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.
Li, Y. J.; Ding, Y. J.; Zhang, B.; Huang, Y. C.; Qi, H. F.; Das, P.; Zhang, L. Z.; Wang, X.; Wu, Z. S.; Bao, X. H. N,O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn-air batteries. Energy Environ. Sci. 2023, 16, 2629–2636
Wang, Y. H.; Tong, C. Z.; Liu, Q. L.; Han, R.; Liu, C. X. Intergrowth zeolites, synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 11664–11721.
Yao, Y. G.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J. W.; Chi, M. F.; Wang, C.; Kevrekidis, I. G.; Ren, Z. J.; Greeley, J. et al. High-entropy nanoparticles: Synthesis–structure–property relationships and data-driven discovery. Science 2022, 376, eabn3103.
Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.
Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.
Trickett, C. A.; Popp, T. M. O.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J. C.; Kalmutzki, M. J.; Liu, Q. N. et al. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170–176.
Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.
Pascanu, V.; Miera, G. G.; Inge, A. K.; Martín-Matute, B. Metal-organic frameworks as catalysts for organic synthesis: A critical perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234.
Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J. A.; Tasios, N.; Pérez-Carvajal, J.; Alonso, M. I.; Blanco, A.; Dijkstra, M.; López, C. et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat. Chem. 2018, 10, 78–84.
Mallick, A.; El-Zohry, A. M.; Shekhah, O.; Yin, J.; Jia, J. T.; Aggarwal, H.; Emwas, A. H.; Mohammed, O. F.; Eddaoudi, M. Unprecedented ultralow detection limit of amines using a thiadiazole-functionalized Zr(IV)-based metal-organic framework. J. Am. Chem. Soc. 2019, 141, 7245–7249.
Han, Z. S.; Wang, K. Y.; Min, H.; Xu, J.; Shi, W.; Cheng, P. Bifunctionalized metal-organic frameworks for pore-size-dependent enantioselective sensing. Angew. Chem., Int. Ed. 2022, 61, e202204066.
Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J. et al. The current status of MOF and COF applications. Angew. Chem., Int. Ed. 2021, 60, 23975–24001.
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.
O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789.
Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700–1718.
Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 2013, 135, 10525–10532.
Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R. et al. Ligand rigidification for enhancing the stability of metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 10283–10293.
Yuan, S.; Peng, J. Y.; Zhang, Y. R.; Shao-Horn, Y. Stability trend of metal-organic frameworks with heterometal-modified hexanuclear Zr building units. J. Phys. Chem. C 2019, 123, 28266–28274.
Wang, L. J.; Li, X. T.; Yang, B.; Xiao, K.; Duan, H. B.; Zhao, H. Z. The chemical stability of metal-organic frameworks in water treatments: Fundamentals, effect of water matrix and judging methods. Chem. Eng. J. 2022, 450, 138215.
Wu, H.; Yildirim, T.; Zhou, W. Exceptional mechanical stability of highly porous zirconium metal-organic framework UiO-66 and its important implications. J. Phys. Chem. Lett. 2013, 4, 925–930.
Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66. Chem. Mater. 2014, 26, 4068–4071.
Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.
Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.
Bůžek, D.; Demel, J.; Lang, K. Zirconium metal-organic framework UiO-66: Stability in an aqueous environment and its relevance for organophosphate degradation. Inorg. Chem. 2018, 57, 14290–14297.
Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.
Fang, Z. L.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Defect-engineered metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 7234–7254.
Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501.
Cox, C. S.; Slavich, E.; Macreadie, L. K.; McKemmish, L. K.; Lessio, M. Understanding the role of synthetic parameters in the defect engineering of UiO-66: A review and meta-analysis. Chem. Mater. 2023, 35, 3057–3072.
Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.
Lázaro, I. A.; Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 2019, 380, 230–259.
Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389–9393.
Liu, X. L.; Demir, N. K.; Wu, Z. T.; Li, K. Highly water-stable zirconium metal organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002.
Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.
Zheng, Z. L.; Nguyen, H. L.; Hanikel, N.; Li, K. K. Y.; Zhou, Z. H.; Ma, T. Q.; Yaghi, O. M. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 2023, 18, 136–156.
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.
Solís, R. R.; Peñas-Garzón, M.; Belver, C.; Rodriguez, J. J.; Bedia, J. Highly stable UiO-66-NH2 by the microwave-assisted synthesis for solar photocatalytic water treatment. J. Environ. Chem. Eng. 2022, 10, 107122.
Wei, J. Z.; Gong, F. X.; Sun, X. J.; Li, Y.; Zhang, T.; Zhao, X. J.; Zhang, F. M. Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance. Inorg. Chem. 2019, 58, 6742–6747.
Zhang, J. T.; Shi, J. B.; Zhao, H.; Bai, J. B.; Li, X. L.; Leng, K. Y. Crystal growth blocking strategy enabling efficient solvent-free synthesis of hierarchical UiO-66 for large-molecule catalysis. Cryst. Growth Des. 2023, 23, 1205–1210.
Zhao, H. J.; Yi, B. L.; Si, X. M.; Bao, W. D.; Cao, L.; Su, L. X.; Wang, Y. L.; Chou, L. Y.; Xie, J. Insights into the solid-state synthesis of defect-rich Zr-UiO-66. Inorg. Chem. 2022, 61, 6829–6836.
Ye, G.; Wan, L. L.; Zhou, J.; Wu, L.; Zhang, Q. L. Solid-phase rapid synthesis of hierarchical UiO-type metal-organic frameworks as excellent solid acid catalysts for acetalization of benzaldehyde with alcohol. Dalton Trans. 2023, 52, 7695–7700.
Zhao, H. J.; Yi, B. L.; Si, X. M.; Cao, L.; Su, L. X.; Wang, Y. L.; Chou, L. Y.; Xie, J. Solid-state synthesis of defect-rich Zr-UiO-66 metal-organic framework nanoparticles for the catalytic ring opening of epoxides with alcohols. ACS Appl. Nano Mater. 2021, 4, 9752–9759.
Fu, Q. J.; Niu, W. J.; Yan, L. T.; Xie, W. P.; Jiang, H. M.; Zhang, S.; Yang, L. Z.; Wang, Y.; Xing, Y. L.; Zhao, X. B. A versatile microfluidic strategy using air–liquid segmented flow for continuous and efficient synthesis of metal-organic frameworks. Mater. Lett. 2023, 343, 134344.
Xu, H. L.; Chen, M. M.; Ji, M. Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde. Catal. Today 2022, 402, 52–59.
Tatay, S.; Martínez-Giménez, S.; Rubio-Gaspar, A.; Gómez-Oliveira, E.; Castells-Gil, J.; Dong, Z. Y.; Mayoral, Á.; Almora-Barrios, N.; M Padial, N; Martí-Gastaldo, C. Synthetic control of correlated disorder in UiO-66 frameworks. Nat. Commun. 2023, 14, 6962.
Semivrazhskaya, O. O.; Salionov, D.; Clark, A. H.; Casati, N. P. M.; Nachtegaal, M.; Ranocchiari, M.; Bjelić, S.; Verel, R.; van Bokhoven, J. A.; Sushkevich, V. L. Deciphering the mechanism of crystallization of UiO-66 metal-organic framework. Small 2023, 19, 2305771.
Shan, B. H.; James, J. B.; Armstrong, M. R.; Close, E. C.; Letham, P. A.; Nikkhah, K.; Lin, Y. S.; Mu, B. Influences of deprotonation and modulation on nucleation and growth of UiO-66: Intergrowth and orientation. J. Phys. Chem. C 2018, 122, 2200–2206.
Chen, X.; Li, Y. J.; Fu, Q.; Qin, H. Y.; Lv, J. N.; Yang, K.; Zhang, Q. C.; Zhang, H.; Wang, M. An efficient modulated synthesis of zirconium metal-organic framework UiO-66. RSC Adv. 2022, 12, 6083–6092.
Ou, R.; Zhu, W. J.; Li, L. L.; Wang, X. Y.; Wang, Q.; Gao, Q.; Yuan, A. H.; Pan, J. M.; Yang, F. Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr). Sep. Purif. Technol. 2021, 266, 118087.
Lee, T. H.; Jung, J. G.; Kim, Y. J.; Roh, J. S.; Yoon, H. W.; Ghanem, B. S.; Kim, H. W.; Cho, Y. H.; Pinnau, I.; Park, H. B. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem., Int. Ed. 2021, 60, 13081–13088.
Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.
Lázaro, I. A.; Popescu, C.; Cirujano, F. G. Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators. Dalton Trans. 2021, 50, 11291–11299.
Gibbons, B.; Bartlett, E. C.; Cai, M.; Yang, X. Z.; Johnson, E. M.; Morris, A. J. Defect level and particle size effects on the hydrolysis of a chemical warfare agent simulant by UiO-66. Inorg. Chem. 2021, 60, 16378–16387.
Atzori, C.; Shearer, G. C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K. P.; Bordiga, S. Effect of benzoic acid as a modulator in the structure of UiO-66: An experimental and computational study. J. Phys. Chem. C 2017, 121, 9312–9324.
Wang, K. Y.; Yang, Z. T.; Zhang, J. Q.; Banerjee, S.; Joseph, E. A.; Hsu, Y. C.; Yuan, S.; Feng, L.; Zhou, H. C. Creating hierarchical pores in metal-organic frameworks via postsynthetic reactions. Nat. Protoc. 2023, 18, 604–625.
Kim, M.; Cahill, J. F.; Fei, H. H.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088.
Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-assisted linker exchange: An alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed. 2014, 53, 4530–4540.
Gutov, O. V.; Hevia, M. G.; Escudero-Adán, E. C.; Shafir, A. Metal-organic framework (MOF) defects under control: Insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorg. Chem. 2015, 54, 8396–8400.
Taddei, M.; Wakeham, R. J.; Koutsianos, A.; Andreoli, E.; Barron, A. R. Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: Beware of the defects! Angew. Chem., Int. Ed. 2018, 57, 11706–11710.
Das, S.; Yang, D.; Conley, E. T.; Gates, B. C. 2-Propanol dehydration on the nodes of the metal-organic framework UiO-66: Distinguishing catalytic sites for formation of propene and di-isopropyl ether. ACS Catal. 2023, 13, 14173–14188
Feng, L.; Yuan, S.; Zhang, L. L.; Tan, K.; Li, J. L.; Kirchon, A.; Liu, L. M.; Zhang, P.; Han, Y.; Chabal, Y. J. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372.
Bueken, B.; Van Velthoven, N.; Krajnc, A.; Smolders, S.; Taulelle, F.; Mellot-Draznieks, C.; Mali, G.; Bennett, T. D.; De Vos, D. Tackling the defect conundrum in UiO-66: A mixed-linker approach to engineering missing linker defects. Chem. Mater. 2017, 29, 10478–10486.
Feng, X.; Jena, H. S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G. B.; Sun, J. M.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B. et al. Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66. J. Am. Chem. Soc. 2021, 143, 21511–21518.
Sun, Y. W.; Yan, J. H.; Gao, Y. L.; Ji, T. T.; Chen, S. X.; Wang, C.; Lu, P.; Li, Y. S.; Liu, Y. Fabrication of highly oriented ultrathin zirconium metal-organic framework membrane from nanosheets towards unprecedented gas separation. Angew. Chem., Int. Ed. 2023, 62, e202216697.
Zhai, X.; Cao, T. L.; Lu, X. Y.; Gao, N. J.; Li, L. L.; Liu, F. C.; Fu, Y.; Qi, W. Construction of hierarchically porous metal-organic frameworks via vapor atmosphere etching. Sci. China Mater. 2022, 65, 3062–3068.
Yang, X. Y.; Li, Z.; Tang, S. K. Tailored design of hierarchically porous UiO-66 with a controlled pore structure and metal sites. Cryst. Growth Des. 2021, 21, 6092–6100.
Wang, P. M.; Sun, L. X.; Ye, J. H.; Liu, Q.; Fei, Z. Y.; Chen, X.; Zhang, Z. X.; Tang, J. H.; Cui, M. F.; Qiao, X. Construction of crystal defect sites in UiO-66 for adsorption of dimethyl phthalate and phthalic acid. Microporous Mesoporous Mater. 2021, 312, 110778.
Zhou, T.; Yang, D. H.; Wang, Y. J.; Cheng, J. S.; Chen, Q.; Liu, B. W.; Liu, Z. W. Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption. Plasma Sci. Technol. 2023, 25, 085505.
Xiang, W. L.; Ren, J.; Chen, S.; Shen, C. Y.; Chen, Y. F.; Zhang, M. H.; Liu, C. J. The metal-organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Appl. Energy 2020, 277, 115560.
Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.
Bon, V.; Senkovskyy, V.; Senkovska, I.; Kaskel, S. Zr(IV) and Hf(IV) based metal-organic frameworks with reo-topology. Chem. Commun. 2012, 48, 8407–8409.
Liu, L. M.; Chen, Z. J.; Wang, J. J.; Zhang, D. L.; Zhu, Y. H.; Ling, S. L.; Huang, K. W.; Belmabkhout, Y.; Adil, K.; Zhang, Y. X. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 2019, 11, 622–628.
Thornton, A. W.; Babarao, R.; Jain, A.; Trousselet, F.; Coudert, F. X. Defects in metal-organic frameworks: A compromise between adsorption and stability. Dalton Trans. 2016, 45, 4352–4359.
Shan, Y.; Zhang, G. X.; Shi, Y. X.; Pang, H. Synthesis and catalytic application of defective MOF materials. Cell Rep. Phys. Sci. 2023, 4, 101301.
Feng, Y.; Chen, Q.; Jiang, M. Q.; Yao, J. F. Tailoring the properties of UiO-66 through defect engineering: A review. Ind. Eng. Chem. Res. 2019, 58, 17646–17659.
Guo, B. B.; Cheng, X. Y.; Tang, Y.; Guo, W.; Deng, S. Q.; Wu, L.; Fu, X. Z. Dehydrated UiO-66(SH)2: The Zr-O cluster and its photocatalytic role mimicking the biological nitrogen fixation. Angew. Chem., Int. Ed. 2022, 61, e202117244.
Dorneles de Mello, M.; Kumar, G.; Tabassum, T.; Jain, S. K.; Chen, T. H.; Caratzoulas, S.; Li, X. Y.; Vlachos, D. G.; Han, S. I.; Scott, S. L. et al. Phosphonate-modified UiO-66 brønsted acid catalyst and its use in dehydra-decyclization of 2-methyltetrahydrofuran to pentadienes. Angew. Chem., Int. Ed. 2020, 59, 13260–13266.
Wang, C.; Kosari, M.; Xi, S. B.; Zeng, H. C. Uniform Si-infused UiO-66 as a robust catalyst host for efficient CO2 hydrogenation to methanol. Adv. Funct. Mater. 2023, 33, 2212478.
He, X. B.; Yin, F. X.; Yi, X. R.; Yang, T.; Chen, B. H.; Wu, X.; Guo, S.; Li, G. R.; Li, Z. C. Defective UiO-66-NH2 functionalized with stable superoxide radicals toward electrocatalytic nitrogen reduction with high faradaic efficiency. ACS Appl. Mater. Interfaces 2022, 14, 26571–26586.
Sannes, D. K.; Øien-Ødegaard, S.; Aunan, E.; Nova, A.; Olsbye, U. Quantification of linker defects in UiO-type metal-organic frameworks. Chem. Mater. 2023, 35, 3793–3800.
Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749–3761.
Shan, B. H.; McIntyre, S. M.; Armstrong, M. R.; Shen, Y. X.; Mu, B. Investigation of missing-cluster defects in UiO-66 and ferrocene deposition into defect-induced cavities. Ind. Eng. Chem. Res. 2018, 57, 14233–14241.
Fu, Y.; Kang, Z. Z.; Cao, W. C.; Yin, J. L.; Tu, Y. Q.; Li, J. H.; Guan, H. X.; Wang, Y. R.; Wang, Q.; Kong, X. Q. Defect-assisted loading and docking conformations of pharmaceuticals in metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 7719–7727.
Chevreau, H.; Liang, W. B.; Kearley, G. J.; Duyker, S. G.; D’Alessandro, D. M.; Peterson, V. K. Concentration-dependent binding of CO2 and CD4 in UiO-66(Zr). J. Phys. Chem. C 2015, 119, 6980–6987.
Johnstone, D. N.; Firth, F. C. N.; Grey, C. P.; Midgley, P. A.; Cliffe, M. J.; Collins, S. M. Direct imaging of correlated defect nanodomains in a metal-organic framework. J. Am. Chem. Soc. 2020, 142, 13081–13089.
Kang, X. C.; Lyu, K.; Li, L. L.; Li, J. N.; Kimberley, L.; Wang, B.; Liu, L. F.; Cheng, Y. Q.; Frogley, M. D.; Rudić, S. et al. Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat. Commun. 2019, 10, 4466.
Zhang, D. L.; Zhu, Y. H.; Liu, L. M.; Ying, X. R.; Hsiung, C. E.; Sougrat, R.; Li, K.; Han, Y. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018, 359, 675–679.
Wang, J. J.; Liu, L. M.; Chen, C. L.; Dong, X. L.; Wang, Q.; Alfilfil, L.; AlAlouni, M. R.; Yao, K. X.; Huang, J. F.; Zhang, D. L. et al. Engineering effective structural defects of metal-organic frameworks to enhance their catalytic performances. J. Mater. Chem. A 2020, 8, 4464–4472.
Xu, Y.; Jiao, L.; Ma, J. L.; Zhang, P.; Tang, Y. F.; Liu, L. M.; Liu, Y.; Ding, H. H.; Sun, J. F.; Wang, M. M. et al. Metal-organic frameworks for nanoconfinement of chlorine in rechargeable lithium-chlorine batteries. Joule 2023, 7, 515–528.
Liu, G. Z.; Guo, Y. N.; Chen, C. L.; Lu, Y.; Chen, G. N.; Liu, G. P.; Han, Y.; Jin, W. Q.; Xu, N. P. Eliminating lattice defects in metal-organic framework molecular-sieving membranes. Nat. Mater. 2023, 22, 769–776.
Liu, B. Y.; Chen, X.; Huang, N.; Liu, S. X.; Wang, Y.; Lan, X. C.; Wei, F.; Wang, T. F. Imaging the dynamic influence of functional groups on metal-organic frameworks. Nat. Commun. 2023, 14, 4835.
Feldblyum, J. I.; Liu, M.; Gidley, D. W.; Matzger, A. J. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1. J. Am. Chem. Soc. 2011, 133, 18257–18263.
Liu, M.; Wong-Foy, A. G.; Vallery, R. S.; Frieze, W. E.; Schnobrich, J. K.; Gidley, D. W.; Matzger, A. J. Evolution of nanoscale pore structure in coordination polymers during thermal and chemical exposure revealed by positron annihilation. Adv. Mater. 2010, 22, 1598–1601.
Yuan, L. Y.; Tian, M.; Lan, J. H.; Cao, X. Z.; Wang, X. L.; Chai, Z. F.; Gibson, J. K.; Shi, W. Q. Defect engineering in metal-organic frameworks: A new strategy to develop applicable actinide sorbents. Chem. Commun. 2018, 54, 370–373.
Mondal, S. S.; Dey, S.; Attallah, A. G.; Bhunia, A.; Kelling, A.; Schilde, U.; Krause-Rehberg, R.; Janiak, C.; Holdt, H. J. Missing building blocks defects in a porous hydrogen-bonded amide-imidazolate network proven by positron annihilation lifetime spectroscopy. ChemistrySelect 2016, 1, 4320–4325.
Mitchell, S.; Gerchow, L.; Warringham, R.; Crivelli, P.; Pérez-Ramírez, J. Shedding new light on nanostructured catalysts with positron annihilation spectroscopy. Small Methods 2018, 2, 1800268.
Guo, P.; Dutta, D.; Wong-Foy, A. G.; Gidley, D. W.; Matzger, A. J. Water sensitivity in Zn4O-based MOFs is structure and history dependent. J. Am. Chem. Soc. 2015, 137, 2651–2657.
Wang, X.; Zhang, X. M.; Zhao, Y.; Luo, D.; Shui, L. L.; Li, Y. B.; Ma, G.; Zhu, Y. J.; Zhang, Y. G.; Zhou, G. F. et al. Accelerated multi-step sulfur redox reactions in lithium-sulfur batteries enabled by dual defects in metal-organic framework-based catalysts. Angew. Chem., Int. Ed. 2023, 62, e202306901.
Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H. B.; Yaghi, O. M. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem., Int. Ed. 2015, 127, 11314–11319.
Cliffe, M. J.; Wan, W.; Zou, X. D.; Chater, P. A.; Kleppe, A. K.; Tucker, M. G.; Wilhelm, H.; Funnell, N. P.; Coudert, F. X.; Goodwin, A. L. Correlated defect nanoregions in a metal-organic framework. Nat. Commun. 2014, 5, 4176.
Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754–9823.
Klet, R. C.; Liu, Y. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal-organic frameworks using potentiometric acid-base titration. J. Mater. Chem. A 2016, 4, 1479–1485.
DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.; Farha, O. K. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chem. Mater. 2017, 29, 1357–1361.
Hicks, K. E.; Wolek, A. T. Y.; Farha, O. K.; Notestein, J. M. The dependence of olefin hydrogenation and isomerization rates on zirconium metal-organic framework structure. ACS Catal. 2022, 12, 13671–13680.
Kar, A. K.; Sarkar, R.; Manal, A. K.; Kumar, R.; Chakraborty, S.; Ahuja, R.; Srivastava, R. Unveiling and understanding the remarkable enhancement in the catalytic activity by the defect creation in UIO-66 during the catalytic transfer hydrodeoxygenation of vanillin with isopropanol. Appl. Catal. B: Environ. 2023, 325, 122385.
Evtushok, V. Y.; Larionov, K. P.; Lopatkin, V. A.; Stonkus, O. A.; Kholdeeva, O. A. What factors determine activity of UiO-66 in H2O2-based oxidation of thioethers. The role of basic sites. J. Catal. 2023, 427, 115099.
Tan, K.; Pandey, H.; Wang, H.; Velasco, E.; Wang, K. Y.; Zhou, H. C.; Li, J.; Thonhauser, T. Defect termination in the UiO-66 family of metal-organic frameworks: The role of water and modulator. J. Am. Chem. Soc. 2021, 143, 6328–6332.
Fu, Y.; Kang, Z. Z.; Yin, J. L.; Cao, W. C.; Tu, Y. Q.; Wang, Q.; Kong, X. Q. Duet of acetate and water at the defects of metal-organic frameworks. Nano Lett. 2019, 19, 1618–1624.
He, Y. Q.; Li, C. G.; Chen, X. B.; Shi, Z.; Feng, S. H. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28977–28984.
Yin, J. L.; Kang, Z. Z.; Fu, Y.; Cao, W. C.; Wang, Y. R.; Guan, H. X.; Yin, Y.; Chen, B. B.; Yi, X. F.; Chen, W. et al. Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nat. Commun. 2022, 13, 5112.
Peng, W. L.; Liu, F. Q.; Yi, X. F.; Sun, S. G.; Shi, H.; Hui, Y.; Chen, W.; Yu, X.; Liu, Z. Q.; Qin, Y. C. et al. Structural and acidic characteristics of multiple Zr defect sites in UiO-66 metal-organic frameworks. J. Phys. Chem. Lett. 2022, 13, 9295–9302.
Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Mapping of functional groups in metal-organic frameworks. Science 2013, 341, 882–885.
Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.
Feng, Y. M.; Xu, Y.; Liu, S. C.; Wu, D.; Su, Z. Q.; Chen, G.; Liu, J. H.; Li, G. L. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 2022, 459, 214414.
Feng, X.; Jena, H. S.; Krishnaraj, C.; Leus, K.; Wang, G. B.; Chen, H.; Jia, C. M.; Van Der Voort, P. Generating catalytic sites in UiO-66 through defect engineering. ACS Appl. Mater. Interfaces 2021, 13, 60715–60735.
Wu, J. C.; Liang, D.; Song, X. B.; Liu, T. S.; Xu, T. Y.; Wang, S. Y.; Zou, Y. Q. Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Energy Chem. 2022, 71, 411–417.
Liang, Y.; Li, C. H.; Chen, L. J.; Huo, J.; Loubidi, M.; Zhou, Y. Y.; Liu, Y. B. Microwave-assisted acid-induced formation of linker vacancies within Zr-based metal organic frameworks with enhanced heterogeneous catalysis. Chin. Chem. Lett. 2021, 32, 787–790.
Liu, X. T.; Hu, C. H.; Wu, J. J.; Cui, P.; Wei, F. Y. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions. Chin. J. Chem. Eng. 2022, 43, 222–229.
Rapeyko, A.; Rodenas, M.; Llabrés i Xamena, F. X. Zr-containing UiO-66 metal-organic frameworks as highly selective heterogeneous acid catalysts for the direct ketalization of levulinic acid. Adv. Sustain. Syst. 2022, 6, 2100451.
Feng, X.; Hajek, J.; Jena, H. S.; Wang, G. B.; Veerapandian, S. K. P.; Morent, R.; De Geyter, N.; Leyssens, K.; Hoffman, A. E. J.; Meynen, V. et al. Engineering a highly defective stable UiO-66 with tunable lewis- brønsted acidity: The role of the hemilabile linker. J. Am. Chem. Soc. 2020, 142, 3174–3183.
Dai, J.; Wang, D. Z.; Yang, J.; Tian, R.; Wang, Q.; Li, Y. Construction of imidazole@defective hierarchical porous UiO-66 and fibrous composites for rapid and nonbuffered catalytic hydrolysis of organophosphorus nerve agents. J. Colloid Interface Sci. 2023, 652, 1156–1169.
Cirujano, F. G.; Llabrés i Xamena, F. X. Tuning the catalytic properties of UiO-66 metal-organic frameworks: From lewis to defect-induced brønsted acidity. J. Phys. Chem. Lett. 2020, 11, 4879–4890.
Kalaj, M.; Momeni, M. R.; Bentz, K. C.; Barcus, K. S.; Palomba, J. M.; Paesani, F.; Cohen, S. M. Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. Chem. Commun. 2019, 55, 3481–3484.
Ma, P.; Ding, M. L.; Rong, W.; Liu, X.; Yao, J. F. Acetic acid-assisted polyhydroxy acid modification of a zirconium-based MOF for synergistic CO2 fixation. J. Environ. Chem. Eng. 2022, 10, 108739.
Ai, Z. W.; Jiao, L.; Wang, J. X.; Jiang, H. L. Generation of hierarchical pores in metal-organic frameworks by introducing rigid modulator. CCS Chem. 2022, 4, 3705–3714.
Wu, Y. F.; Xiao, Y.; Yuan, H.; Zhang, Z. Q.; Shi, S. B.; Wei, R. P.; Gao, L. J.; Xiao, G. M. Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Microporous Mesoporous Mater. 2021, 310, 110578.
Zou, Y. H.; Huang, Y. B.; Si, D. H.; Yin, Q.; Wu, Q. J.; Weng, Z. X.; Cao, R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion. Angew. Chem., Int. Ed. 2021, 60, 20915–20920.
Vermoortele, F.; Vandichel, M.; Van de Voorde, B.; Ameloot, R.; Waroquier, M.; Van Speybroeck, V.; De Vos, D. E. Electronic effects of linker substitution on lewis acid catalysis with metal-organic frameworks. Angew. Chem., Int. Ed. 2012, 51, 4887–4890.
Fang, G. Q.; Hu, J. N.; Tian, L. C.; Liang, J. X.; Lin, J.; Li, L.; Zhu, C.; Wang, X. D. Zirconium-oxo nodes of MOFs with tunable electronic properties provide effective ·OH species for enhanced methane hydroxylation. Angew. Chem., Int. Ed. 2022, 61, e202205077.
Jrad, A.; Hmadeh, M.; Awada, G.; Chakleh, R.; Ahmad, M. Efficient biofuel production by MTV-UiO-66 based catalysts. Chem. Eng. J. 2021, 410, 128237.
Jiménez-Osés, G.; Osuna, S.; Gao, X.; Sawaya, M. R.; Gilson, L.; Collier, S. J.; Huisman, G. W.; Yeates, T. O.; Tang, Y.; Houk, K. N. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat. Chem. Biol. 2014, 10, 431–436.
Bunzel, H. A.; Anderson, J. L. R.; Hilvert, D.; Arcus, V. L.; van der Kamp, M. W.; Mulholland, A. J. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat. Chem. 2021, 13, 1017–1022.
Zhang, X. F.; Yang, C. Y.; An, P. F.; Cui, C. Q.; Ma, Y. M.; Liu, H. T.; Wang, H.; Yan, X. Y.; Li, G. D.; Tang, Z. Y. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. Sci. Adv. 2022, 8, eadd5678.
Yin, J.; Fu, W. D.; Zhang, J. R.; Liu, X. Y.; Zhang, X. M.; Wang, C.; He, J.; Jiang, W.; Li, H. P.; Li, H. M. UiO-66(Zr)-based porous ionic liquids for highly efficient extraction coupled catalytic oxidative desulfurization. Chem. Eng. J. 2023, 470, 144290.
Dai, Q. Q.; Yang, Z. F.; Li, J.; Cao, Y.; Tang, H. B.; Wei, X. C. Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil. Renew. Energy 2021, 163, 1588–1594.
Zhang, X. L.; Sun, Y. X.; Liu, Y. F.; Zhai, Z. Y.; Guo, S. Q.; Peng, L. C.; Qin, Y.; Li, C. J. UiO-66-NH2 fabrics: Role of trifluoroacetic acid as a modulator on MOF uniform coating on electrospun nanofibers and efficient decontamination of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 2021, 13, 39976–39984.
de Azambuja, F.; Loosen, A.; Conic, D.; van den Besselaar, M.; Harvey, J. N.; Parac-Vogt, T. N. En route to a heterogeneous catalytic direct peptide bond formation by Zr-based metal-organic framework catalysts. ACS Catal. 2021, 11, 7647–7658.
Ronaghi, N.; Shade, D.; Moon, H. J.; Najmi, S.; Cleveland, J. W.; Walton, K. S.; France, S.; Jones, C. W. Modulation and tuning of UiO-66 for lewis acid catalyzed carbohydrate conversion: Conversion of unprotected aldose sugars to polyhydroxyalkyl and C-glycosyl furans. ACS Sustain. Chem. Eng. 2021, 9, 11581–11595.
Maksimchuk, N. V.; Lee, J. S.; Solovyeva, M. V.; Cho, K. H.; Shmakov, A. N.; Chesalov, Y. A.; Chang, J. S.; Kholdeeva, O. A. Protons make possible heterolytic activation of hydrogen peroxide over Zr-based metal-organic frameworks. ACS Catal. 2019, 9, 9699–9704.
Melillo, A.; Franconetti, A.; Alvaro, M.; Ferrer, B.; Garcia, H. Metal nodes of metal-organic frameworks can activate molecular hydrogen. Chem.—Eur. J. 2023, 29, e202202625.
Jiang, Y. Y.; Zhou, R. R.; Ye, B. Y.; Hou, Z. Y. Acetalization of glycerol over sulfated UiO-66 under mild condition. J. Ind. Eng. Chem. 2022, 110, 357–366.
Zheng, Z. L.; Rong, Z. C.; Rampal, N.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem., Int. Ed. 2023, 62, e202311983.
Zheng, Z. L.; Zhang, O. F.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 2023, 145, 18048–18062.
Zheng, Z. L.; Alawadhi, A. H.; Chheda, S.; Neumann, S. E.; Rampal, N.; Liu, S. C.; Nguyen, H. L.; Lin, Y. H.; Rong, Z. C.; Siepmann, J. I. et al. Shaping the water-harvesting behavior of metal-organic frameworks aided by fine-tuned GPT models. J. Am. Chem. Soc. 2023, 145, 28284–28295.
Boiko, D. A.; MacKnight, R.; Kline, B.; Gomes, G. Autonomous chemical research with large language models. Nature 2023, 624, 570–578.