AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Operando investigation of nanocrystal-based device energy landscape: Seeing the current pathway

Mariarosa Cavallo1Dario Mastrippolito1Erwan Bossavit1,4Leonardo Curti2Adrien Khalili1Huichen Zhang1Nicolas Ledos1Yoann Prado1Erwan Dandeu1Michael Rosticher3Sandrine Ithurria2Pavel Dudin4José Avila4( )Debora Pierucci1Emmanuel Lhuillier1( )
Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris , France
Laboratoire de Physique et d’Etude des Matériaux, ESPCI, PSL Research University, Sorbonne Université, CNRS, 10 rue Vauquelin, 75005 Paris, France
Laboratoire de physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
Show Author Information

Graphical Abstract

We unveil the potential of photoemission microscopy as in-situ probe for mapping the energy landscape of nanocrystal-based optoelectronic devices operando.

Abstract

Due to their unique optical properties, colloidal nanocrystals (NCs) have transitioned from a solution processable luminescent liquid to an established building block for optoelectronics. As devices get more advanced, a higher degree of refinement is also required for the probe used to investigate their electronic structure. For long, device optimization has relied on the measurement of physical properties of the pristine material, assuming that they would be maintained after device integration. However, such an assumption neglects the realistic dielectric environment and possibly applied electric fields to drive the device. Hence, tools compatible with operando investigation of the electronic structure are required. Here, we review and present additional results relative to the operando investigation of infrared NCs using photoemission microscopy. This technique combines the advantages of photoemission to unveil band alignment with a sub-µm spatial resolution that is used to correlate energy shift to the device geometry. This method gives direct access to parameters such as diode built-in potential, transistor lever arm, or even the vectorial distribution of the electric field that are otherwise only attainable through indirect methods involving modelling. We provide indications and precautions to be used in the design of devices to permit the operando analysis via photoemission techniques. It is, therefore, a very promising tool for the optimization of NC-based devices.

Electronic Supplementary Material

Download File(s)
6622_ESM.pdf (817.1 KB)

References

[1]

Erdem, T.; Demir, H. V. Colloidal nanocrystals for quality lighting and displays: Milestones and recent developments. Nanophotonics 2016, 5, 74–95.

[2]

Beveratos, A.; Kühn, S.; Brouri, R.; Gacoin, T.; Poizat, J. P.; Grangier, P. Room temperature stable single-photon source. Eur. Phys. J. D 2002, 18, 191–196.

[3]

De Vittorio, M.; Pisanello, F.; Martiradonna, L.; Qualtieri, A.; Stomeo, T.; Bramati, A.; Cingolani, R. Recent advances on single photon sources based on single colloidal nanocrystals. Opto-Electron. Rev. 2010, 18, 1–9.

[4]

Brokmann, X.; Messin, G.; Desbiolles, P.; Giacobino, E.; Dahan, M.; Hermier, J. P. Colloidal CdSe/ZnS quantum dots as single-photon sources. New J. Phys. 2004, 6, 99.

[5]

Pejović, V.; Georgitzikis, E.; Lee, J.; Lieberman, I.; Cheyns, D.; Heremans, P.; Malinowski, P. E. Infrared colloidal quantum dot image sensors. IEEE Trans. Electron Devices 2022, 69, 2840–2850.

[6]

Gréboval, C.; Darson, D.; Parahyba, V.; Alchaar, R.; Abadie, C.; Noguier, V.; Ferré, S.; Izquierdo, E.; Khalili, A.; Prado, Y. et al. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging. Nanoscale 2022, 14, 9359–9368.

[7]

Soreni-Harari, M.; Yaacobi-Gross, N.; Steiner, D.; Aharoni, A.; Banin, U.; Millo, O.; Tessler, N. Tuning energetic levels in nanocrystal quantum dots through surface manipulations. Nano Lett. 2008, 8, 678–684.

[8]

Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333–334.

[9]

Zhao, H. F.; Zhu, Y. C.; Ye, H. Y.; He, Y.; Li, H.; Sun, Y. F.; Yang, F.; Wang, R. M. Atomic-scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv. Mater. 2023, 35, 2206911.

[10]

Zhou, L.; Sun, Y. H.; Wu, Y. S.; Zhu, Y. C.; Xu, Y. Y.; Jia, J. F.; Wang, F.; Wang, R. M. Controlled growth of Pd nanocrystals by interface interaction on monolayer MoS2: An atom-resolved in situ study. Nano Lett. 2023, 23, 11360–11367.

[11]

Ye, H. Y.; Zhang, Z. H.; Wang, R. M. Nucleation and growth of nanocrystals investigated by in situ transmission electron microscopy. Small 2023, 19, 2303872.

[12]

Carroll, G. M.; Tsui, E. Y.; Brozek, C. K.; Gamelin, D. R. Spectroelectrochemical measurement of surface electrostatic contributions to colloidal CdSe nanocrystal redox potentials. Chem. Mater. 2016, 28, 7912–7918.

[13]

Ravi, V. K.; Markad, G. B.; Nag, A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 2016, 1, 665–671.

[14]

Chen, M. L.; Guyot-Sionnest, P. Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 2017, 11, 4165–4173.

[15]

Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

[16]

Jagtap, A.; Martinez, B.; Goubet, N.; Chu, A.; Livache, C.; Gréboval, C.; Ramade, J.; Amelot, D.; Trousset, P.; Triboulin, A. et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode. ACS Photonics 2018, 5, 4569–4576.

[17]

Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

[18]

Sarma, D. D.; Santra, P. K.; Mukherjee, S.; Nag, A. X-ray photoelectron spectroscopy: A unique tool to determine the internal heterostructure of nanoparticles. Chem. Mater. 2013, 25, 1222–1232.

[19]

Livache, C.; Izquierdo, E.; Martinez, B.; Dufour, M.; Pierucci, D.; Keuleyan, S.; Cruguel, H.; Becerra, L.; Fave, J. L.; Aubin, H. et al. Charge dynamics and optolectronic properties in HgTe colloidal quantum Wells. Nano Lett. 2017, 17, 4067–4074.

[20]

Gréboval, C.; Rastogi, P.; Qu, J. L.; Chu, A.; Ramade, J.; Khalili, A.; Dabard, C.; Dang, T. H.; Cruguel, H.; Ouerghi, A. et al. Time-resolved photoemission to unveil electronic coupling between absorbing and transport layers in a quantum dot-based solar cell. J. Phys. Chem. C 2020, 124, 23400–23409.

[21]

Rastogi, P.; Izquierdo, E.; Gréboval, C.; Cavallo, M.; Chu, A.; Dang, T. H.; Khalili, A.; Abadie, C.; Alchaar, R.; Pierini, S. et al. Extended short-wave photodiode based on CdSe/HgTe/Ag2Te stack with high internal efficiency. J. Phys. Chem. C 2022, 126, 13720–13728.

[22]

Amelot, D.; Rastogi, P.; Martinez, B.; Gréboval, C.; Livache, C.; Bresciani, F. A.; Qu, J. L.; Chu, A.; Goyal, M.; Chee, S. S. et al. Revealing the band structure of FAPI quantum dot film and its interfaces with electron and hole transport layer using time resolved photoemission. J. Phys. Chem. C 2020, 124, 3873–3880.

[23]

Schneider, C. M.; Wiemann, C.; Patt, M.; Feyer, V.; Plucinski, L.; Krug, I. P.; Escher, M.; Weber, N.; Merkel, M.; Renault, O. et al. Expanding the view into complex material systems: From micro-ARPES to nanoscale HAXPES. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 330–339.

[24]

Locatelli, A.; Bauer, E. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys.: Condens. Matter 2008, 20, 093002.

[25]

Renault, O. High-resolution XPS spectromicroscopy. Surf. Interface Anal. 2010, 42, 816–825.

[26]

Menteş, T. O.; Zamborlini, G.; Sala, A.; Locatelli, A. Cathode lens spectromicroscopy: Methodology and applications. Beilstein J. Nanotechnol. 2014, 5, 1873–1886.

[27]

Locatelli, A.; Aballe, L.; Mentes, T. O.; Kiskinova, M.; Bauer, E. Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications. Surf. Interface Anal. 2006, 38, 1554–1557.

[28]

Barrett, N.; Gottlob, D. M.; Mathieu, C.; Lubin, C.; Passicousset, J.; Renault, O.; Martinez, E. Operando X-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions. Rev. Sci. Instrum. 2016, 87, 053703.

[29]

Wiemann, C.; Patt, M.; Krug, I. P.; Weber, N. B.; Escher, M.; Merkel, M.; Schneider, C. M. A new nanospectroscopy tool with synchrotron radiation: NanoESCA@Elettra. E-J. Surf. Sci. Nanotechnol. 2011, 9, 395–399.

[30]

Patt, M.; Wiemann, C.; Weber, N.; Escher, M.; Gloskovskii, A.; Drube, W.; Merkel, M.; Schneider, C. M. Bulk sensitive hard X-ray photoemission electron microscopy. Rev. Sci. Instrum. 2014, 85, 113704.

[31]

Escher, M.; Winkler, K.; Renault, O.; Barrett, N. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope. J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 303–316

[32]

di Mario, L.; Turchini, S.; Zamborlini, G.; Feyer, V.; Tian, L.; Schneider, C. M.; Rubini, S.; Martelli, F. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy. Appl. Surf. Sci. 2016, 386, 72–77.

[33]

Aballe, L.; Foerster, M.; Pellegrin, E.; Nicolas, J.; Ferrer, S. The ALBA spectroscopic LEEM-PEEM experimental station: Layout and performance. J. Synchrotron Rad. 2015, 22, 745–752.

[34]

Cavallo, M.; Bossavit, E.; Zhang, H. C.; Dabard, C.; Dang, T. H.; Khalili, A.; Abadie, C.; Alchaar, R.; Mastrippolito, D.; Prado, Y. et al. Mapping the energy landscape from a nanocrystal-based field effect transistor under operation using nanobeam photoemission spectroscopy. Nano Lett. 2023, 23, 1363–1370.

[35]

Cavallo, M.; Bossavit, E.; Matzen, S.; Maroutian, T.; Alchaar, R.; Dang, T. H.; Khalili, A.; Dabard, C.; Zhang, H. C.; Prado, Y. et al. Coupling ferroelectric to colloidal nanocrystals as a generic strategy to engineer the carrier density landscape. Adv. Funct. Mater. 2023, 33, 2300846.

[36]

Cavallo, M.; Ram, A.; Pandey, S.; Maroutian, T.; Bossavit, E.; Ledos, N.; Khalili, A.; Zhang, H. C.; Prado, Y.; Nguyen, D. L. et al. Using wafer scale ferroelectric domains of LiNbO3 to form permanent planar p-n junction in narrow band gap nanocrystals. Appl. Phys. Lett. 2023, 123, 253505.

[37]

Cavallo, M.; Alchaar, R.; Bossavit, E.; Zhang, H. C.; Dang, T. H.; Khalili, A.; Prado, Y.; Silly, M. G.; Utterback, J. K.; Ithurria, S. et al. Inside a nanocrystal-based photodiode using photoemission microscopy. Nanoscale 2023, 15, 9440–9448.

[38]

Amati, M.; Barinov, A.; Feyer, V.; Gregoratti, L.; Al-Hada, M.; Locatelli, A.; Mentes, T. O.; Sezen, H.; Schneider, C. M.; Kiskinova, M. Photoelectron microscopy at elettra: Recent advances and perspectives. J. Electron Spectrosc. Relat. Phenom. 2018, 224, 59–67.

[39]

Zeller, P.; Amati, M.; Sezen, H.; Scardamaglia, M.; Struzzi, C.; Bittencourt, C.; Lantz, G.; Hajlaoui, M.; Papalazarou, E.; Marino, M. et al. Scanning photoelectron spectro-microscopy: A modern tool for the study of materials at the nanoscale. Phys. Status Solidi (a) 2018, 215, 1800308.

[40]

Wu, C. L.; Lee, H. M.; Kuo, C. T.; Chen, C. H.; Gwo, S. Absence of fermi-level pinning at cleaved nonpolar InN surfaces. Phys. Rev. Lett. 2008, 101, 106803.

[41]

Avila, J.; Asensio, M. C. First nanoARPES user facility available at SOLEIL: An innovative and powerful tool for studying advanced materials. Synchrotron Radiat. News 2014, 27, 24–30.

[42]

Iwasawa, H.; Dudin, P.; Inui, K.; Masui, T.; Kim, T. K.; Cacho, C.; Hoesch, M. Buried double CuO chains in YBa2Cu4O8 uncovered by nano-ARPES. Phys. Rev. B 2019, 99, 140510.

[43]

Kastl, C.; Koch, R. J.; Chen, C. T.; Eichhorn, J.; Ulstrup, S.; Bostwick, A.; Jozwiak, C.; Kuykendall, T. R.; Borys, N. J.; Toma, F. M. et al. Effects of defects on band structure and excitons in WS2 revealed by nanoscale photoemission spectroscopy. ACS Nano 2019, 13, 1284–1291.

[44]

Dudin, P.; Lacovig, P.; Fava, C.; Nicolini, E.; Bianco, A.; Cautero, G.; Barinov, A. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of elettra. J. Synchrotron Rad. 2010, 17, 445–450.

[45]

Koch, R. J.; Jozwiak, C.; Bostwick, A.; Stripe, B.; Cordier, M.; Hussain, Z.; Yun, W. B.; Rotenberg, E. Nano focusing of soft X-rays by a new capillary mirror optic. Synchrotron Radiat. News 2018, 31, 50–52.

[46]
Gogoi, D.; Wiemann, C.; Dittmann, R.; Schneider, C. M. Resistive switching systems: A spectromicroscopy approach. Phys. Status Solidi (A), in press, https://doi.org/10.1002/pssa.202300500.
[47]

Avila, J.; Lorcy, S.; Dudin, P. ANTARES: Space-resolved electronic structure. J. Electron Spectrosc. Relat. Phenom. 2023, 266, 147362.

[48]

Iwasawa, H. High-resolution angle-resolved photoemission spectroscopy and microscopy. Electron. Struct. 2020, 2, 043001.

[49]

Wang, Y.; Dendzik, M. Recent progress in angle-resolved photoemission spectroscopy. Meas. Sci. Technol. 2024, 35, 042002.

[50]
Yeh, J. J. Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters; Gordon & Breach Science, Publishers: Langhorne, 1993.
[51]

Yeh, J. J.; Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. Atom. Data Nucl. Data Tables 1985, 32, 1–155.

[52]

Gréboval, C.; Chu, A.; Goubet, N.; Livache, C.; Ithurria, S.; Lhuillier, E. Mercury chalcogenide quantum dots: Material perspective for device integration. Chem. Rev. 2021, 121, 3627–3700.

[53]

Tian, Y. Y.; Luo, H. Q.; Chen, M. Y.; Li, C.; Kershaw, S. V.; Zhang, R.; Rogach, A. L. Mercury chalcogenide colloidal quantum dots for infrared photodetection: From synthesis to device applications. Nanoscale 2023, 15, 6476–6504.

[54]
Lhuillier, E.; Dang, T. H.; Cavallo, M.; Abadie, C.; Khalili, A.; Gréboval, C. Electronic structure of mercury chalcogenides nanocrystals. In Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Volume 1, Materials and Technology, Korotcenkov, G., Ed.; Springer: Cham, 2023; pp 133–156.
[55]
Buurma, C.; Pimpinella, R. E.; Ciani, A. J.; Feldman, J. S.; Grein, C. H.; Guyot-Sionnest, P. MWIR imaging with low cost colloidal quantum dot films. In Proceedings of the SPIE 9933, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications 2016, San Diego, 2016, p 993303.
[56]

Zhang, S.; Bi, C.; Qin, T. L.; Liu, Y. F.; Cao, J.; Song, J. Q.; Huo, Y. J.; Chen, M. L.; Hao, Q.; Tang, X. Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots. ACS Photonics 2023, 10, 673–682.

[57]

Luo, Y. N.; Tan, Y. M.; Bi, C.; Zhang, S.; Xue, X. M.; Chen, M. L.; Hao, Q.; Liu, Y. F.; Tang, X. Megapixel large-format colloidal quantum-dot infrared imagers with resonant-cavity enhanced photoresponse. APL Photonics 2023, 8, 056109.

[58]
Steckel, J. S.; Josse, E.; Pattantyus-Abraham, A. G.; Bidaud, M.; Mortini, B.; Bilgen, H.; Arnaud, O.; Allegret-Maret, S.; Saguin, F.; Mazet, L. et al. 1.62μm global shutter quantum dot image sensor optimized for near and shortwave infrared. In 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2021, pp 23.4.1–23.4.4.
[59]

Pang, C.; Deng, Y. H.; Kheradmand, E.; Poonkottil, N.; Petit, R.; Elsinger, L.; Detavernier, C.; Geiregat, P.; Hens, Z.; Van Thourhout, D. Integrated PbS colloidal quantum dot photodiodes on silicon nitride waveguides. ACS Photonics 2023, 10, 4215–4224.

[60]

Dang, T. H.; Cavallo, M.; Khalili, A.; Dabard, C.; Bossavit, E.; Zhang, H. C.; Ledos, N.; Prado, Y.; Lafosse, X.; Abadie, C. et al. Multiresonant grating to replace transparent conductive oxide electrode for bias selected filtering of infrared photoresponse. Nano Lett. 2023, 23, 8539–8546.

[61]

Seah, M. P.; Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2–11.

[62]

Zhang, H. Y.; Pincelli, T.; Jozwiak, C.; Kondo, T.; Ernstorfer, R.; Sato, T.; Zhou, S. Y. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2022, 2, 54.

[63]

Radosavljević, M.; Freitag, M.; Thadani, K. V.; Johnson, A. T. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2002, 2, 761–764.

[64]

Song, X. X.; Zhang, Z. Z.; You, J.; Liu, D.; Li, H. O.; Cao, G.; Xiao, M.; Guo, G. P. Temperature dependence of coulomb oscillations in a few-layer two-dimensional WS2 quantum dot. Sci. Rep. 2015, 5, 16113.

[65]

Gonzalez-Zalba, M. F.; Heiss, D.; Podd, G.; Ferguson, A. J. Tunable aluminium-gated single electron transistor on a doped silicon-on-insulator etched nanowire. Appl. Phys. Lett. 2012, 101, 103504.

[66]

Dong, Y. F.; Chen, M. Y.; Yiu, W. K.; Zhu, Q.; Zhou, G. D.; Kershaw, S. V.; Ke, N.; Wong, C. P.; Rogach, A. L.; Zhao, N. Solution processed hybrid polymer: HgTe quantum dot phototransistor with high sensitivity and fast infrared response up to 2400 Nm at room temperature. Adv. Sci. 2020, 7, 2000068.

[67]

Chen, M. Y.; Lu, H. P.; Abdelazim, N. M.; Zhu, Y.; Wang, Z.; Ren, W.; Kershaw, S. V.; Rogach, A. L.; Zhao, N. Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 Nm. ACS Nano 2017, 11, 5614–5622.

[68]

Gréboval, C.; Noumbe, U.; Goubet, N.; Livache, C.; Ramade, J.; Qu, J. L.; Chu, A.; Martinez, B.; Prado, Y.; Ithurria, S. et al. Field-effect transistor and photo-transistor of narrow-band-gap nanocrystal arrays using ionic glasses. Nano Lett. 2019, 19, 3981–3986.

[69]

Gréboval, C.; Chu, A.; Magalhaes, D. V.; Ramade, J.; Qu, J. L.; Rastogi, P.; Khalili, A.; Chee, S. S.; Aubin, H.; Vincent, G. et al. Ferroelectric gating of narrow band-gap nanocrystal arrays with enhanced light-matter coupling. ACS Photonics 2021, 8, 259–268.

[70]

Chee, S. S.; Gréboval, C.; Magalhaes, D. V.; Ramade, J.; Chu, A.; Qu, J. L.; Rastogi, P.; Khalili, A.; Dang, T. H.; Dabard, C. et al. Correlating structure and detection properties in HgTe nanocrystal films. Nano Lett. 2021, 21, 4145–4151.

[71]

Qin, T. L.; Mu, G.; Zhao, P. F.; Tan, Y. M.; Liu, Y. F.; Zhang, S.; Luo, Y. N.; Hao, Q.; Chen, M. L.; Tang, X. Mercury telluride colloidal quantum-dot focal plane array with planar p-n junctions enabled by in situ electric field-activated doping. Sci. Adv. 2023, 9, eadg7827.

[72]

Dunfield, S. P.; Bojar, A.; Cacovich, S.; Frégnaux, M.; Klein, T.; Bramante, R.; Zhang, F.; Regaldo, D.; Dufoulon, V.; Puel, J. B. et al. Carrier gradients and the role of charge selective contacts in lateral heterojunction all back contact perovskite solar cells. Cell Rep. Phys. Sci. 2021, 2, 100520.

[73]

Zhang, H. C.; Ledos, N.; Cavallo, M.; Bossavit, E.; Khalili, A.; Curti, L.; Xu, X. Z.; Dandeu, E.; Utterback, J. K.; Ithurria, S. et al. Photoemission insight on narrow band gap PbS quantum dots relevant for infrared imaging. J. Phys. Chem. C 2024, 128, 2028–2036.

[74]

Gréboval, C.; Izquierdo, E.; Abadie, C.; Khalili, A.; Cavallo, M.; Chu, A.; Dang, T. H.; Zhang, H. C.; Lafosse, X.; Rosticher, M. et al. HgTe nanocrystal-based photodiode for extended short-wave infrared sensing with optimized electron extraction and injection. ACS Appl. Nano Mater. 2022, 5, 8602–8611.

[75]

Ackerman, M. M.; Tang, X.; Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 2018, 12, 7264–7271.

[76]

Khalili, A.; Cavallo, M.; Bossavit, E.; Alchaar, R.; Dang, T. H.; Dabard, C.; Zhang, H. C.; Ledos, N.; Parahyba, V.; Potet, P. et al. In situ mapping of the vectorial electric field within a nanocrystal-based focal plane array using photoemission microscopy. ACS Appl. Electron. Mater. 2023, 5, 4377–4384.

[77]

Avila, J.; Razado-Colambo, I.; Lorcy, S.; Lagarde, B.; Giorgetta, J. L.; Polack, F.; Asensio, M. C. ANTARES, a scanning photoemission microscopy beamline at SOLEIL. J. Phys.: Conf. Ser. 2013, 425, 192023.

Nano Research
Pages 10376-10385
Cite this article:
Cavallo M, Mastrippolito D, Bossavit E, et al. Operando investigation of nanocrystal-based device energy landscape: Seeing the current pathway. Nano Research, 2024, 17(12): 10376-10385. https://doi.org/10.1007/s12274-024-6622-5
Topics:

756

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 January 2024
Revised: 04 March 2024
Accepted: 11 March 2024
Published: 18 May 2024
© Tsinghua University Press 2024
Return