Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hydrogen peroxide (H2O2) photoproduction in seawater with metal-free photocatalysts derived from biomass materials is a green, sustainable, and ultra environmentally friendly way. However, most photocatalysts are always corroded or poisoned in seawater, resulting in a significantly reduced catalytic performance. Here, we report the metal-free photocatalysts (RUT-1 to RUT-5) with in-situ generated carbon dots (CDs) from biomass materials (Rutin) by a simple microwave-assisted pyrolysis method. Under visible light (λ ≥ 420 nm, 81.6 mW/cm2), the optimized catalyst of RUT-4 is stable and can achieve a high H2O2 yield of 330.36 μmol/L in seawater, 1.78 times higher than that in normal water. New transient potential scanning (TPS) tests are developed and operated to in-situ study the H2O2 photoproduction of RUT-4 under operation condition. RUT-4 has strong oxygen (O2) absorption capacity, and the O2 reduction rate in seawater is higher than that in water. Metal cations in seawater further promote the photo-charge separation and facilitate the photo-reduction reaction. For RUT-4, the conduction band level under operating conditions only satisfies the requirement of O2 reduction but not for hydrogen (H2) evolution. This work provides new insights for the in-situ study of photocatalyst under operation condition, and gives a green and sustainable path for the H2O2 photoproduction with metal-free catalysts in seawater.
Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.
Wei, Z.; Liu, M. L.; Zhang, Z. J.; Yao, W. Q.; Tan, H. W.; Zhu, Y. F. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 2018, 11, 2581–2589.
Li, S. N.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B: Environ. 2016, 190, 26–35.
Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.
Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.
Ai, L. H.; Zhang, C. H.; Li, L. L.; Jiang, J. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B: Environ. 2014, 148–149, 191–200
Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B: Environ. 2019, 258, 117956.
Yang, Y.; Zhang, C.; Huang, D. L.; Zeng, G. M.; Huang, J. H.; Lai, C.; Zhou, C. Y.; Wang, W. J.; Guo, H.; Xue, W. J. et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl. Catal. B: Environ. 2019, 245, 87–99.
Zhang, Z. J.; Tsuchimochi, T.; Ina, T.; Kumabe, Y.; Muto, S.; Ohara, K.; Yamada, H.; Ten-No, S. L.; Tachikawa, T. Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis. Nat. Commun. 2022, 13, 1499.
He, X.; Zheng, N. C.; Hu, R. T.; Hu, Z. F.; Yu, J. C. Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments. Adv. Funct. Mater. 2021, 31, 2006505.
Hu, B.; Wang, K.; Wu, L. H.; Yu, S. H.; Antonietti, M.; Titirici, M. M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828.
Hu, Z. F.; Shen, Z. R.; Yu, J. C. Converting carbohydrates to carbon-based photocatalysts for environmental treatment. Environ. Sci. Technol. 2017, 51, 7076–7083.
Titirici, M. M.; White, R. J.; Falco, C.; Sevilla, M. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy Environ. Sci. 2012, 5, 6796–6822.
Xu, L. P.; Liu, Y.; Hu, Z. F.; Yu, J. C. Converting cellulose waste into a high-efficiency photocatalyst for Cr(VI) reduction via molecular oxygen activation. Appl. Catal. B: Environ. 2021, 295, 120253.
Banu, S.; Yadav, P. P. Chlorophyll: The ubiquitous photocatalyst of nature and its potential as an organo-photocatalyst in organic syntheses. Org. Biomol. Chem. 2022, 20, 8584–8598.
Joshi, M.; Kamble, S. P.; Labhsetwar, N. K.; Parwate, D. V.; Rayalu, S. S. Chlorophyll-based photocatalysts and their evaluations for methyl orange photoreduction. J. Photochem. Photobiol. A: Chem. 2009, 204, 83–89.
Shi, M. J.; Wei, W.; Jiang, Z. F.; Han, H. K.; Gao, J. R.; Xie, J. M. Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Adv. 2016, 6, 25255–25266.
Liu, Y.; Wang, J. X.; Wu, J.; Zhao, Y. J.; Huang, H.; Liu, Y.; Kang, Z. H. Critical roles of H2O and O2 in H2O2 photoproduction over biomass derived metal-free catalyst. Appl. Catal. B: Environ. 2022, 319, 121944.
Liu, Y.; Wang, X.; Zhao, Y. J.; Wu, Q. Y.; Nie, H. D.; Si, H. L.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007.
Dang, H. V.; Wang, Y. H.; Wu, J. C. S. Z-scheme photocatalyst Pt/GaP-TiO2-SiO2: Rh for the separated H2 evolution from photocatalytic seawater splitting. Appl. Catal. B: Environ. 2021, 296, 120339.
Gopakumar, A.; Ren, P.; Chen, J. H.; Manzolli Rodrigues, B. V.; Vincent Ching, H. Y.; Jaworski, A.; Doorslaer, S. V.; Rokicińska, A.; Kuśtrowski, P.; Barcaro, G. et al. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. J. Am. Chem. Soc. 2022, 144, 2603–2613.
Xu, W. M.; Zhao, X. D.; An, X. H.; Wang, S.; Zhang, J.; Li, Z. S.; Wu, W. T.; Wu, M. B. Alkali halide boost of carbon nitride for photocatalytic H2 evolution in seawater. ACS Appl. Mater. Interfaces 2020, 12, 48526–48532.
Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.
Bao, K. L.; Liao, F.; Zhou, Y. J.; Wu, J.; Wang, J. X.; Yan, X.; Fan, Z. L.; Liu, Y.; Huang, H.; Kang, Z. H. Carbon dots regulate the multiple-proton-electron catalytic process and switch carbon dioxide reduction to hydrogen evolution reaction of PdCu alloy electrocatalyst. Appl. Surf. Sci. 2023, 619, 156784.
Du, X.; Zhang, M. L.; Ma, Y. R.; Wang, X. T.; Liu, Y.; Huang, H.; Kang, Z. H. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J. Colloid Interface Sci. 2023, 634, 44–53.
Ma, Y. R.; Zhang, M. L.; Wu, J.; Zhao, Y. J.; Du, X.; Huang, H.; Zhou, Y. J.; Liu, Y.; Kang, Z. H. The key effect of carboxyl group and CuN2O2 coordinate structure for Cu, N co-doped carbon dots with peroxidase-like property. Small 2023, 19, 2300883.
Yu, K.; Li, Z. N.; Zhang, T. Y.; He, T. W.; Fan, Z. L.; Huang, H.; Liao, F.; Liu, Y.; Kang, Z. H. Carbon dots driven directional charge migration on sulfur vacancy enriched ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 2023, 635, 157762.
Zhang, T. Y.; Shen, J.; Shan Shen, W.; Fan, Z. L.; Yu, K.; Wang, Y. M.; Si, H. L.; Huang, H.; Liu, Y.; Liao, L. S. et al. A simple device-to-device transform for white light-emitting diode with monochromatic carbon dots. Adv. Opt. Mater. 2023, 11, 2301651.
Zhang, T. Y.; Wang, X.; Huang, H.; Liu, Y.; Kang, Z. H. Conventional and inverted light-emitting diodes with 386 nm emission wavelength based on metal-free carbon dots. ACS Appl. Mater. Interfaces 2023, 15, 18045–18054.
Zhou, Y. J.; Liao, F.; Liu, Y.; Kang, Z. H. The advanced multi-functional carbon dots in photoelectrochemistry based energy conversion. Int. J. Extrem. Manuf. 2022, 4, 042001.
Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.
Wu, Q. Y.; Zhu, M. M.; Cao, J. J.; Wang, X.; Liu, Y.; Xiang, C. S.; Shao, M. W.; Tian, H.; Kang, Z. H. Metal-free catalyst with large carbon defects for efficient direct overall water splitting in air at room pressure. ACS Appl. Mater. Interfaces 2020, 12, 30280–30288.
Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 2021, 289, 120035.
Zhao, Y. J.; Xu, L. L.; Wang, X.; Wang, Z. Z.; Liu, Y.; Wang, Y.; Wang, Q. L.; Wang, Z. T.; Huang, H.; Liu, Y. et al. A comprehensive understanding on the roles of carbon dots in metallated graphyne based catalyst for photoinduced H2O2 production. Nano Today 2022, 43, 101428.
Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 515–522.
Wang, J. X.; Liu, Y.; Han, Y. D.; Bao, K. L.; He, T. W.; Huang, H.; Liu, Y.; Kang, Z. H. A carbon dot-based metal-free photocatalyst enables O2 to serve as both a reactant and electron sink for enhancing H2O2 photoproduction. J. Mater. Chem. A 2022, 10, 15074–15079.
Shi, Y. X.; Zhao, Q.; Li, J. Y.; Gao, G. Y.; Zhi, J. F. Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation. Appl. Catal. B: Environ. 2022, 308, 121216.
Xia, P. F.; Antonietti, M.; Zhu, B. C.; Heil, T.; Yu, J. G.; Cao, S. W. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv. Funct. Mater. 2019, 29, 1900093.
Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 2015, 27, 4572–4577.
Li, J. C.; Shi, H.; Li, Z. N.; Wang, J. X.; Si, H. L.; Liao, F.; Huang, H.; Liu, Y.; Kang, Z. H. Interaction of metal ions in high efficiency seawater hydrogen peroxide production by a carbon-based photocatalyst. Appl. Catal. B: Environ. 2024, 343, 123541.
Wrighton, M. S.; Wolczanski, P. T.; Ellis, A. B. Photoelectrolysis of water by irradiation of platinized n-type semiconducting metal oxides. J. Solid State Chem. 1977, 22, 17–29.
Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 2008, 181, 46–55.
Cardon, F.; Gomes, W. P. On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. J. Phys. D: Appl. Phys. 1978, 11, L63–L67.