AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamic lithium-compensation mechanism for densification of garnet-type Li7La3Zr2O12 electrolyte by Li2O atmosphere buffer pair

Chujun Zheng1,3,§Ya Chen1,3,§Haoxin Dong1,3Yan Lu1,3Jun Jin1,3Zhaoyin Wen1,2,3( )
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
State Key Lab High Performance Ceram and Superfine, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

§ Chujun Zheng and Ya Chen contributed equally to this work.

Show Author Information

Graphical Abstract

The Li2ZrO3 that used as mother powder additive manipulates Li2O atmosphere helps densification of garnet electrolyte.

Abstract

Solid-state lithium metal batteries are one of the most promising options for next-generation batteries pursuing high-energy density and high-safety. However, the inevitable volatilization of lithium compounds during sintering leads to low relative density and low ionic conductivity of solid-state electrolytes. Herein, the dynamic lithium-compensation mechanism is proposed to facilitate the densification of Ta-substituted garnet-type electrolyte (Li6.5La3Zr1.5Ta0.5O12 (LLZT)) through the reversible manipulating of Li2O atmosphere. Li2ZrO3 is used as mother powder additive, which reacts with Li2O in sintering atmosphere and forms Li6Zr2O7. Li2ZrO3/Li6Zr2O7 buffer pair manipulates the sintering Li2O atmosphere, which is vital for LLZT, within the Li2O partial pressure range corresponding to Li2ZrO3 and Li6Zr2O7. Furthermore, the reversibility mechanism of buffer pair for Li2O absorption and release is revealed. The obtained LLZT exhibits a relative density of over 96% and an ionic conductivity exceeding 7 × 10−4 S·cm−1 with no abnormal grain growth. The symmetric cell demonstrates an excellent lithium dendrite suppressing ability (stable cycling at a current density of 0.3 mA·cm−2 for over 1000 h). Such dynamic lithium-compensation strategy has been successfully applied in atmosphere manipulation of LLZT sintering process, which reduces the dependence of LLZT on the Li2O atmosphere, making it conducive to large-scale preparation of electrolyte ceramics.

Electronic Supplementary Material

Download File(s)
6624_ESM.pdf (619.1 KB)

References

[1]

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

[2]

Zhao, L.; Zeng, Y. P.; Fu, L.; Zhang, J. M.; Sun, D.; Tang, Y. G.; Ren, Y.; Pan, F. S.; Wang, H. Y. Constructing low-impedance Li7La3Zr2O12-based composite cathode interface for all-solid-state lithium batteries. Small Structures 2022, 3, 2200200.

[3]

Sun, C.; Ruan, Y.; Zha, W.; Li, W.; Cai, M.; Wen, Z. Recent advances in anodic interface engineering for solid-state lithium-metal batteries. Mater. Horiz. 2020, 7, 1667–1696.

[4]

Zou, C. F.; Yang, L.; Luo, K. L.; Liu, L.; Tao, X. Y.; Yi, L. G.; Liu, X. H.; Zhang, X. Y.; Wang, X. Y. In situ formed protective layer: Toward a more stable interface between the lithium metal anode and Li6PS5Cl solid electrolyte. ACS Appl. Energy Mater. 2022, 5, 8428–8436

[5]

Zou, C. F.; Yang, L.; Zang, Z. H.; Tao, X. Y.; Yi, L. G.; Chen, X. Y.; Liu, X. H.; Zhang, X. Y.; Wang, X. Y. LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 and chlorine-rich argyrodite enabling high-performance all-solid-state lithium batteries at suitable stack pressure. Ceram. Int. 2023, 49, 443–449.

[6]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[7]

Bates, J. B.; Dudney, N. J.; Neudecker, B.; Ueda, A.; Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 2000, 135, 33–45.

[8]

Zhao, E. Q.; Ma, F. R.; Guo, Y. D.; Jin, Y. C. Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries. RSC Adv. 2016, 6, 92579–92585.

[9]

Kim, H.; Ding, Y.; Kohl, P. A. LiSICON–ionic liquid electrolyte for lithium ion battery. J. Power Sources 2012, 198, 281–286.

[10]

Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

[11]

Troy, S.; Schreiber, A.; Reppert, T.; Gehrke, H. G.; Finsterbusch, M.; Uhlenbruck, S.; Stenzel, P. Life cycle assessment and resource analysis of all-solid-state batteries. Appl. Energy 2016, 169, 757–767.

[12]

Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975.

[13]

Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Solid garnet batteries. Joule 2019, 3, 1190–1199.

[14]

Huang, X.; Lu, Y.; Song, Z.; Rui, K.; Wang, Q. S.; Xiu, T.; Badding, M. E.; Wen, Z. Y. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. Energy Storage Mater. 2019, 22, 207–217.

[15]

Huang, Z. Y.; Liu, K.; Chen, L. H.; Lu, Y. R.; Li, Y. T.; Wang, C. A. Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. Int. J. Appl. Ceram. Technol. 2017, 14, 921–927.

[16]

Huang, X.; Song, Z.; Xiu, T. P.; Badding, M. E.; Wen, Z. Y. Searching for low-cost Li x MO y compounds for compensating Li-loss in sintering of Li-garnet solid electrolyte. J. Materiom. 2019, 5, 221–228.

[17]

Fang, Z. X.; Tang, B.; Si, F.; Li, E. Z.; Yang, H. Y.; Zhang, S. R. Phase evolution, structure and microwave dielectric properties of Li2+ x Mg3SnO6 ( x = 0.00–0.12) ceramics. Ceram. Int. 2017, 43, 13645–13652.

[18]

Janani, N.; Deviannapoorani, C.; Dhivya, L.; Murugan, R. Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv. 2014, 4, 51228–51238.

[19]

Yang, L.; Dai, Q. S.; Liu, L.; Shao, D. S.; Luo, K. L.; Jamil, S.; Liu, H.; Luo, Z. G.; Chang, B. B.; Wang, X. Y. Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram. Int. 2020, 46, 10917–10924.

[20]

Zheng, C. J.; Su, J. M.; Song, Z.; Xiu, T.; Jin, J.; Badding, M. E.; Wen, Z. Y. Sintering promotion and electrochemical performance of garnet-type electrolyte with Li2CuO2 additive. J. Alloys Compd. 2023, 933, 167810.

[21]

Zhang, W. Q.; Sun, C. W. Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. J. Phys. Chem. Solids 2019, 135, 109080.

[22]

Ohta, S.; Seki, J.; Yagi, Y.; Kihira, Y.; Tani, T.; Asaoka, T. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J. Power Sources 2014, 265, 40–44.

[23]

Huang, X.; Shen, C.; Rui, K.; Jin, J.; Wu, M. F.; Wu, X. W.; Wen, Z. Y. Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet. JOM 2016, 68, 2593–2600.

[24]

Huang, X.; Lu, Y.; Song, Z.; Xiu, T.; Badding, M. E.; Wen, Z. Y. Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO. J. Energy Chem. 2019, 39, 8–16.

[25]

Zheng, C. J.; Lu, Y.; Su, J. M.; Song, Z.; Xiu, T.; Jin, J.; Badding, M. E.; Wen, Z. Y. Grain boundary engineering enabled high-performance garnet-type electrolyte for lithium dendrite free lithium metal batteries. Small Methods 2022, 6, 2200667.

[26]

Zheng, C. J.; Su, J. M.; Song, Z.; Xiu, T.; Jin, J.; Badding, M. E.; Wen, Z. Y. Improvement of density and electrochemical performance of garnet-type Li7La3Zr2O12 for solid-state lithium metal batteries enabled by W and Ta co-doping strategy. Mater. Today Energy 2022, 27, 101034.

[27]

Zheng, C. J.; Lu, Y.; Chang, Q.; Song, Z.; Xiu, T. P.; Jin, J.; Badding, M. E.; Wen, Z. Y. High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer. Adv. Funct. Mater. 2023, 33, 2302729.

[28]

Yi, E.; Shen, H.; Heywood, S.; Alvarado, J.; Parkinson, D. Y.; Chen, G. Y.; Sofie, S. W.; Doeff, M. M. All-solid-state batteries using rationally designed garnet electrolyte frameworks. ACS Appl. Energy Mater. 2020, 3, 170–175.

[29]

Yao, L.; Li, Y. P.; Gao, X. P.; Cai, M. L.; Jin, J.; Yang, J. H.; Xiu, T.; Song, Z.; Badding, M. E.; Wen, Z. Y. Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. Energy Storage Mater. 2021, 36, 179–185.

[30]

Huang, X.; Lu, Y.; Niu, Y. J.; Tang, J. W.; Zhou, Y. J.; Yang, Y.; Tian, B. B. From protonation & Li-rich contamination to grain-boundary segregation: Evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte. J. Energy Chem. 2022, 73, 223–239.

[31]

Asano, M.; Kato, Y.; Harada, T.; Mizutani, Y. Vaporization and thermochemical properties of Li8ZrO6 and comparison with other lithium-containing complex oxides. J. Nucl. Mater. 1996, 230, 110–115.

[32]

Tian, Y.; Zhou, Y.; Wang, W.; Zhou, Y. Effects of Ga–Ba Co-doping on the morphology and conductivity of Li7La3Zr2O12 electrolyte synthesized by sol–gel method. Ceram. Int. 2022, 48, 963–970.

[33]

Huang, X.; Lu, Y.; Guo, H. J.; Song, Z.; Xiu, T. P.; Badding, M. E.; Wen, Z. Y. None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density. ACS Appl. Energy Mater. 2018, 1, 5355–5365.

[34]

Kato, Y.; Asano, M.; Harada, T.; Mizutani, Y. Mass-spectrometric study of vaporization and thermodynamic properties of Li2ZrO3(s). J. Nucl. Mater. 1993, 203, 27–35.

[35]

Kato, Y.; Asano, M.; Harada, T.; Mizutani, Y. Thermochemical properties of Li6Zr2O7(s) by a mass-spectrometric Knudsen effusion method. J. Nucl. Mater. 1993, 207, 130–135.

[36]

Zheng, C. J.; Ruan, Y. D.; Su, J. M.; Song, Z.; Xiu, T.; Jin, J.; Badding, M. E.; Wen, Z. Y. Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth. Chem. Eng. J. 2021, 411, 128508.

Nano Research
Pages 6184-6191
Cite this article:
Zheng C, Chen Y, Dong H, et al. Dynamic lithium-compensation mechanism for densification of garnet-type Li7La3Zr2O12 electrolyte by Li2O atmosphere buffer pair. Nano Research, 2024, 17(7): 6184-6191. https://doi.org/10.1007/s12274-024-6624-3
Topics:

399

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 February 2024
Revised: 07 March 2024
Accepted: 11 March 2024
Published: 27 April 2024
© Tsinghua University Press 2024
Return