AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Formation of ZnSe magic-size clusters displaying optical absorption doublets from prenucleation clusters

Dingyu Zhao1Shasha Wang2Jiawei Xue2Chunchun Zhang3Shanling Wang3Xiaoqin Chen2Chaoran Luan4( )Kui Yu1,2( )
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, China
Analytical & Testing Center, Sichuan University, Chengdu 610065, China
College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
Show Author Information

Graphical Abstract

Magic-size clusters (MSCs) develop from their precursor compounds (PCs). dMSC-345 forms in a reaction of Zn and Se precursors via steps 1/2/3. Alcohol promotes step 4, and dMSC-320 (via steps 4/5) and dMSC-345 (via steps 4/6/3) are seen at relatively early and later stage when PC-299 is heated.

Abstract

The formation pathway of colloidal semiconductor ZnSe magic-size clusters (MSCs) in a reaction that display an optical absorption doublet remains poorly understood. The reaction of Zn(OAc)2/OLA (made from zinc acetate and oleylamine) and tri-n-octylphosphine selenide (SeTOP) in OLA in the presence of diphenylphosphine (HPPh2) is studied, in which dMSC-345 displays a doublet peaking at 328/345 nm. We suggest that the development is from the clusters that form in the initial prenucleation stage of the reaction. The clusters are the precursor compound (PC-299) of MSC-299 (displaying an absorption singlet peaking at 299 nm). PC-299 transforms to PC-345 at a later stage. The presence of alcohol (such as methanol or ethylene glycol) promotes another pathway, which is the PC-299 to PC-320 transformation. PC-320 transforms to dMSC-320 (with a doublet at 305/320 nm), followed by dMSC-345 via PC-345. The present study provides additional evidence that clusters (PC-299) form and transform (such as to dMSC-345 via PC-345) in the prenucleation stage of ZnSe quantum dots (QDs).

Electronic Supplementary Material

Download File(s)
6627_ESM.pdf (3.1 MB)

References

[1]

Wei, H. T.; Sun, H. Z.; Zhang, H.; Gao, C.; Yang, B. An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Res. 2010, 3, 496–505.

[2]

Chen, H. S.; Wang, S. J. J.; Lo, C. J.; Chi, J. Y. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl. Phys. Lett. 2005, 86, 131905.

[3]

Li, Z. J.; Li, S. Y.; Davis, A. H.; Hofman, E.; Leem, G.; Zheng, W. W. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 2020, 13, 1668–1676.

[4]

Luo, W. N.; Jiu, T. G.; Kuang, C. Y.; Li, B. R.; Lu, F. S.; Fang, J. F. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 2015, 8, 3045–3053.

[5]

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

[6]

Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A. R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

[7]

Long, Z. W.; Liu, M. R.; Wu, X. G.; Gu, K.; Yang, G. L.; Chen, Z.; Liu, Y.; Liu, R. H.; Zhong, H. Z. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2023, 2, 296–304.

[8]

Yu, K.; Hrdina, A.; Zhang, X. G.; Ouyang, J. Y.; Leek, D. M.; Wu, X. H.; Gong, M. L.; Wilkinson, D.; Li, C. S. Highly-photoluminescent ZnSe nanocrystals via a non-injection-based approach with precursor reactivity elevated by a secondary phosphine. Chem. Commun. 2011, 47, 8811–8813.

[9]

Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

[10]

Pang, Y. P.; Zhang, M. Y.; Chen, D. C.; Chen, W.; Wang, F.; Anwar, S. J.; Saunders, M.; Rowles, M. R.; Liu, L. H.; Liu, S. M. et al. Why do colloidal wurtzite semiconductor nanoplatelets have an atomically uniform thickness of eight monolayers. J. Phys. Chem. Lett. 2019, 10, 3465–3471.

[11]

Cunningham, P. D.; Coropceanu, I.; Mulloy, K.; Cho, W.; Talapin, D. V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: A connection between clusters, nanowires, and two-dimensional nanoplatelets. ACS Nano 2020, 14, 3847–3857.

[12]

Zhou, Y.; Jiang, R. D.; Wang, Y. Y.; Rohrs, H. W.; Rath, N. P.; Buhro, W. E. Isolation of amine derivatives of (ZnSe)34 and (CdTe)34. Spectroscopic comparisons of the (II-VI)13 and (II-VI)34 magic-size nanoclusters. Inorg. Chem. 2019, 58, 1815–1825.

[13]

Wang, Y. Y.; Zhou, Y.; Zhang, Y.; Buhro, W. E. Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165–1177.

[14]

Park, H.; Chung, H.; Kim, W. Synthesis of ultrathin wurtzite ZnSe nanosheets. Mater. Lett. 2013, 99, 172–175.

[15]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[16]

Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

[17]

Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99–102.

[18]

Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548–552.

[19]

Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

[20]

Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.

[21]

Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.

[22]

Li, Y.; Rowell, N.; Luan, C. R.; Zhang, M.; Chen, X. Q.; Yu, K. A two-pathway model for the evolution of colloidal compound semiconductor quantum dots and magic-size clusters. Adv. Mater. 2022, 34, 2107940.

[23]

Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

[24]

Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem., Int. Ed. 1996, 35, 1154–1196.

[25]

Service, R. F. How far can we push chemical self-assembly. Science 2005, 309, 95–95.

[26]

Yang, X. X.; Zhang, M.; Shen, Q.; Li, Y.; Luan, C. R.; Yu, K. The precursor compound of two types of ZnSe magic-sized clusters. Nano Res. 2022, 15, 465–474.

[27]

Li, Y.; Zhang, M.; He, L.; Rowell, N.; Kreouzis, T.; Zhang, C. C.; Wang, S. L.; Luan, C. R.; Chen, X. Q.; Zhang, S. J. et al. Manipulating reaction intermediates to aqueous-phase ZnSe magic-size clusters and quantum dots at room temperature. Angew. Chem., Int. Ed. 2022, 61, e202209615.

[28]

Wang, T. H.; Wang, Z.; Wang, S. L.; Chen, X. Q.; Luan, C. R.; Yu, K. Thermally-induced isomerization of prenucleation clusters during the prenucleation stage of CdTe quantum dots. Angew. Chem., Int. Ed. 2023, 62, e202310234.

[29]

Xu, R. K.; Wang, Z.; Yang, Y. S.; Gu, C.; Luan, C. R.; Wang, S. L.; Chen, X. Q.; Yu, K. Formation and transformation of CdS clusters during the prenucleation stage and in a dilute dispersion at room temperature. Nano Lett. 2024, 24, 1294–1302.

[30]

Yang, Y. S.; Shen, Q.; Zhang, C. C.; Rowell, N.; Zhang, M.; Chen, X. Q.; Luan, C. R.; Yu, K. Direct and indirect pathways of CdTeSe magic-size cluster isomerization induced by surface ligands at room temperature. ACS Cent. Sci. 2023, 9, 519–530.

[31]

Yu, K.; Liu, X. Y.; Zeng, Q.; Leek, D. M.; Ouyang, J. Y.; Whitmore, K. M.; Ripmeester, J. A.; Tao, Y.; Yang, M. L. Effect of tertiary and secondary phosphines on low-temperature formation of quantum dots. Angew. Chem. 2013, 125, 4923–4928.

[32]
Jackman, L. M.; Cotton F. A. Dynamic Nuclear Magnetic Resonance Spectroscopy; Academic Press: New York, 1975.
[33]

He, L.; Luan, C. R.; Liu, S. P.; Chen, M.; Rowell, N.; Wang, Z.; Li, Y.; Zhang, C. C.; Lu, J.; Zhang, M. et al. Transformations of magic-size clusters via precursor compound cation exchange at room temperature. J. Am. Chem. Soc. 2022, 144, 19060–19069.

[34]

Justino, L. L. G.; Ramos, M. L.; Knaapila, M.; Marques, A. T.; Kudla, C. J.; Scherf, U.; Almásy, L.; Schweins, R.; Burrows, H. D.; Monkman, A. P. Gel formation and interpolymer alkyl chain interactions with poly (9,9-dioctylfluorene-2,7-diyl) (PFO) in toluene solution: Results from NMR, SANS, DFT, and semiempirical calculations and their implications for PFO β-phase formation. Macromolecules 2011, 44, 334–343.

[35]

Wang, D. Q.; Liu, Y. H.; Rowell, N.; Wang, S. L.; Zhang, C. C.; Zhang, M.; Luan, C. R.; Yu, K. Direct and indirect evolution of photoluminescent semiconductor CdS magic-size clusters through their precursor compounds. Angew. Chem., Int. Ed. 2023, 62, e202304329.

[36]

Liu, Y. Y.; Willis, M.; Rowell, N.; Luo, W. Z.; Fan, H. S.; Han, S.; Yu, K. Effect of small molecule additives in the prenucleation stage of semiconductor CdSe quantum dots. J. Phys. Chem. Lett. 2018, 9, 6356–6363.

[37]

Liu, Y. Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S. L.; Fan, H. S.; Huang, W.; Chen, X. Q.; Yu, K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801.

[38]

Zhu, J. M.; Cao, Z. P.; Zhu, Y. C.; Rowell, N.; Li, Y.; Wang, S. L.; Zhang, C. C.; Jiang, G.; Zhang, M.; Zeng, J. R. et al. Transformation pathway from CdSe magic-size clusters with absorption doublets at 373/393 nm to clusters at 434/460 nm. Angew. Chem., Int. Ed. 2021, 60, 20358–20365.

[39]

Shen, J.; Luan, C. R.; Rowell, N.; Li, Y.; Zhang, M.; Chen, X. Q.; Yu, K. Size matters: Steric hindrance of precursor molecules controlling the evolution of CdSe magic-size clusters and quantum dots. Nano Res. 2022, 15, 8564–8572.

[40]

Cao, Z. P.; Zhu, J. M.; Peng, J.; Meng, N.; Bian, F. G.; Luan, C. R.; Zhang, M.; Li, Y.; Yu, K.; Zeng, J. R. Transformation pathway from CdSe nanoplatelets with absorption doublets at 373/393 nm to nanoplatelets at 434/460 nm. J. Phys. Chem. Lett. 2022, 13, 3983–3989.

[41]
Wang, Z.; Zhang, C. C.; Wang, S. L.; Zhang, M.; Chen, X. Q.; Luan, C. R.; Yu, K. Formation and transformation of ZnTe and CdTe magic-size clusters assisted by their precursor compounds. Chem. Mater., in press.
Nano Research
Pages 6741-6748
Cite this article:
Zhao D, Wang S, Xue J, et al. Formation of ZnSe magic-size clusters displaying optical absorption doublets from prenucleation clusters. Nano Research, 2024, 17(7): 6741-6748. https://doi.org/10.1007/s12274-024-6627-0
Topics:

456

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 06 February 2024
Revised: 29 February 2024
Accepted: 08 March 2024
Published: 29 April 2024
© Tsinghua University Press 2024
Return