AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unveiling structural evolution of Fe single atom catalyst in nitrate reduction for enhanced electrocatalytic ammonia synthesis

Xusheng Cheng,§Wenzhe Shang,§Yuehui LiJinwen HuJingya GuoDequan CaoNaitian ZhangSonglin ZhangSuchan SongTianna LiuWei Liu( )Yantao Shi( )
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, Dalian 116024, China

§ Xusheng Cheng and Wenzhe Shang contributed equally to this work.

Show Author Information

Graphical Abstract

We utilized in-situ X-ray absorption spectroscopy to reveal the structural transformations from FeN4 to FeN3 during the process of nitrate reduction to ammonia, which is a crucial step in achieving high catalytic activity.

Abstract

Atomic transition metal–nitrogen–carbon electrocatalysts exhibit outstanding activity in various electrocatalytic reactions. The challenge lies in predicting the structure of the active center, which may undergo changes under applied potential and interact with reactants or intermediates. Advanced characterization techniques, particularly in-situ X-ray absorption spectroscopy (XAS), provide crucial insights into the structural evolution of the metal active center during the reaction. In this study, nitrate reduction to ammonia (NO3RR) was selected as a model reaction, and we introduced in-situ XAS to reveal the structural evolution during the catalytic process. A novel single atom catalyst of iron loaded on three-dimensional nitrogen–carbon nanonetwork (designated as Fe SAC/NC) was successfully synthesized. We unraveled the structural transformations occurring as pyrrole-N4-Fe transitions to pyrrole-N3-Fe throughout the NO3RR process. Notably, the Fe SAC/NC catalyst exhibited excellent catalytic activity, achieving a Faradaic efficiency of 98.2% and an ammonia generation rate of 22,515 μg·h−1·mgcat−1 at −0.8 V versus reversible hydrogen electrode. Theoretical calculations combined with in-situ spectroscopic characterization showed that pyrrole-N3-Fe reduced the energy barrier from *NO to *NHO and improved the selectivity of ammonia. This provides a robust reference for the design of efficient nitrate-to-ammonia synthesis catalysts.

Electronic Supplementary Material

Download File(s)
6628_ESM.pdf (16.9 MB)

References

[1]

Wang, C. Q.; Zhang, Y. B.; Luo, H. X.; Zhang, H.; Li, W.; Zhang, W. X.; Yang, J. P. Iron-based nanocatalysts for electrochemical nitrate reduction. Small Methods 2022, 6, 2200790.

[2]

Wang, C. H.; Liu, Z. Y.; Li, C. M.; Guo, C. X. Progress on electrocatalytic reduction of nitrate on copper-based catalysts. Chin. Sci. Bull. 2021, 66, 4411–4424.

[3]

Cheng, X. F.; He, J. H.; Ji, H. Q.; Zhang, H. Y.; Cao, Q.; Sun, W. J.; Yan, C. L.; Lu, J. M. Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia. Adv. Mater. 2022, 34, 2205767.

[4]
Xiong, Y. C.; Wang, Y. H.; Zhou, J. W.; Liu, F.; Hao, F. K.; Fan, Z. X. Electrochemical nitrate reduction: Ammonia synthesis and the beyond. Adv. Mater., in press, DOI: 10.1002/adma.202304021.
[5]

Jin, T.; Wang, J. T.; Gong, Y.; Zheng, Q.; Wang, T. X.; Wu, R. Q.; Lyu, Y.; Liu, X. F. Mechanochemical-tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem Catal. 2023, 3, 100477.

[6]

Cao, Y.; Yuan, S. B.; Meng, L. H.; Wang, Y. Y.; Hai, Y.; Su, S. D.; Ding, W. M.; Liu, Z. Y.; Li, X. M.; Luo, M. Recent advances in electrocatalytic nitrate reduction to ammonia: Mechanism insight and catalyst design. ACS Sustain. Chem. Eng. 2023, 11, 7965–7985.

[7]

Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

[8]

Wan, X.; Shui, J. L. Exploring durable single-atom catalysts for proton exchange membrane fuel cells. ACS Energy Lett. 2022, 7, 1696–1705.

[9]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[10]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[11]

Han, A.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[12]

Xu, L. H.; Liu, W. P.; Liu, K. Single atom environmental catalysis: Influence of supports and coordination environments. Adv. Funct. Mater. 2023, 33, 2304468.

[13]

Yuan, S. Y.; Xue, Y. H.; Ma, R. E.; Ma, Q.; Chen, Y. Y.; Fan, J. W. Advances in iron-based electrocatalysts for nitrate reduction. Sci. Total Environ. 2023, 866, 161444.

[14]

Liu, J. J.; Gong, Z. C.; Allen, C.; Ge, W.; Gong, H. S.; Liao, J. W.; Liu, J. B.; Huang, K.; Yan, M. M.; Liu, R. et al. Edge-hosted Fe-N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction. Chem Catal. 2021, 1, 1291–1307.

[15]

Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co–N–C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

[16]

Bae, G.; Han, S.; Oh, H. S.; Choi, C. H. Operando stability of single-atom electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202219227.

[17]

Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co–Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

[18]
Wang, L. G.; Su, H.; Tan, G. Y.; Xin, J. J.; Wang, X. G.; Zhang, Z.; Li, Y. P.; Qiu, Y.; Li, X. H.; Li, H. S. et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation. Adv. Mater., in press.
[19]

Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

[20]

Tong, M. M.; Sun, F. F.; Xing, G. Y.; Tian, C. G.; Wang, L.; Fu, H. G. Potential dominates structural recombination of single atom Mn sites for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202314933.

[21]

Xin, C. C.; Shang, W. Z.; Hu, J. W.; Zhu, C.; Guo, J. Y.; Zhang, J. W.; Dong, H. P.; Liu, W.; Shi, Y. T. Integration of morphology and electronic structure modulation on atomic iron–nitrogen–carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 2022, 32, 2108345.

[22]

Hu, J. W.; Shang, W. Z.; Xin, C. X.; Guo, J. Y.; Cheng, X. S.; Zhang, S. L.; Song, S. C.; Liu, W.; Ju, F.; Hou, J. G. et al. Uncovering dynamic edge-sites in atomic Co–N–C electrocatalyst for selective hydrogen peroxide production. Angew. Chem., Int. Ed. 2023, 62, e202304754.

[23]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[24]

Xi, D. W.; Li, J. Y.; Low, J.; Mao, K. K.; Long, R.; Li, J. W.; Dai, Z. H.; Shao, T. Y.; Zhong, Y.; Li, Y. et al. Limiting the uncoordinated N species in M–N x single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv. Mater. 2022, 34, 2104090.

[25]

Liu, L. Y.; Xiao, T.; Fu, H. Y.; Chen, Z. J.; Qu, X. L.; Zheng, S. R. Construction and identification of highly active single-atom Fe1–NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B: Environ. 2023, 323, 122181.

[26]

Xu, J. W.; Zhang, S. B.; Liu, H. J.; Liu, S.; Yuan, Y.; Meng, Y. H.; Wang, M. M.; Shen, C. Y.; Peng, Q.; Chen, J. H. et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2023, 62, e202308044.

[27]

Mozgawa, B.; Zasada, F.; Fedyna, M.; Góra-Marek, K.; Tabor, E.; Mlekodaj, K.; Dědeček, J.; Zhao, Z.; Pietrzyk, P.; Sojka, Z. Analysis of NH3-TPD profiles for CuSSZ-13 SCR catalyst of controlled Al distribution—Complexity resolved by first principles thermodynamics of NH3 desorption, IR and EPR insight into Cu speciation. Chem.—Eur. J. 2021, 27, 17159.

[28]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[29]

Zhang, W. D.; Dong, H. L.; Zhou, L.; Xu, H. W.; Wang, H. R.; Yan, X. D.; Jiang, Y. Q.; Zhang, J. W.; Gu, Z. G. Fe single-atom catalysts with pre-organized coordination structure for efficient electrochemical nitrate reduction to ammonia. Appl. Catal. B: Environ. 2022, 317, 121750.

[30]

Su, H.; Zhou, W. L.; Zhang, H.; Zhou, W.; Zhao, X.; Li, Y. L.; Liu, M. H.; Cheng, W. R.; Liu, Q. H. Dynamic evolution of solid–liquid electrochemical interfaces over single-atom active sites. J. Am. Chem. Soc. 2020, 142, 12306–12313.

[31]

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

[32]

Xing, G. Y.; Tong, M. M.; Yu, P.; Wang, L.; Zhang, G. Y.; Tian, C. G.; Fu, H. G. Reconstruction of highly dense Cu-N4 active sites in electrocatalytic oxygen reduction characterized by operando synchrotron radiation. Angew. Chem., Int. Ed. 2022, 61, e202211098.

[33]

Yang, F.; Song, P.; Ge, X.; Wang, Y.; Gunji, T.; Zhang, W.; Zhao, X.; Xu, W. L. Operando analysis reveals potential-driven in situ formation of single-Fe-atom electrocatalysts for green production of ammonia. Proc. Natl. Acad. Sci. USA 2023, 120, e2301011120.

[34]

Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2209890.

[35]

Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

[36]

Ren, Y. F.; Tian, F. G.; Jin, L. M.; Wang, Y.; Yang, J. P.; You, S. J.; Liu, Y. B. Fluidic MXene electrode functionalized with iron single atoms for selective electrocatalytic nitrate transformation to ammonia. Environ. Sci. Technol. 2023, 57, 10458–10466.

[37]

Zhang, N. N.; Zhang, G. K.; Shen, P.; Zhang, H.; Ma, D. W.; Chu, K. Lewis acid Fe–V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2211537.

Nano Research
Pages 6826-6832
Cite this article:
Cheng X, Shang W, Li Y, et al. Unveiling structural evolution of Fe single atom catalyst in nitrate reduction for enhanced electrocatalytic ammonia synthesis. Nano Research, 2024, 17(8): 6826-6832. https://doi.org/10.1007/s12274-024-6628-z
Topics:

350

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 February 2024
Revised: 07 March 2024
Accepted: 07 March 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return