AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Terpyridine-based metallo-cuboctahedron nanomaterials for efficient photocatalytic degradation of persistent organic pollutants

Qixia Bai1,§Yan Huang1,§Zhihong Chen1,§Yilin Pan1Xiaohan Zhang1Qingwu Long2Qiaoan Yang1Tun Wu1Ting-Zheng Xie1Mingjian Wang3Hongguang Luo3Chun Hu1( )Pingshan Wang1( )Zhe Zhang1( )
Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
Guangdong Guangye Inspection & Testing Group Co., Ltd., Guangzhou 510006, China

§ Qixia Bai, Yan Huang, and Zhihong Chen contributed equally to this work.

Show Author Information

Graphical Abstract

A general and stable approach for the synthesis of nanoscale metallo-cuboctahedron photocatalysts with simple preparation and high catalytic performance was reported. This series of supramolecular photocatalysts (S1-Zn, S1-Fe, S1-Co, and S1-Cu) were highly effective in degrading persistent organic pollutants in water under visible light irradiation and could simultaneously produce H2O2.

Abstract

Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities, easy modification, high tunability, and enriched active sites. Herein, we prepared a series of dihydroanthracene-cored terpyridine-based metallo-cuboctahedron nanomaterials through a self-assembly method, which exhibited satisfactory degradation performance for persistent organic pollutants under visible light irradiation. In particular, under light conditions, S1-Zn, one of the prepared nanomaterials, produced photogenerated holes oxidizing water molecules to ∙OH, which attacked ibuprofen (IBU) for up to 95% degradation. Simultaneously, the corresponding photogenerated electrons reduced the dissolved oxygen in water, producing 66.2 μmol/L hydrogen peroxide. The obtained supramolecular photocatalytic materials have a stable structure with non-precious metals and do not require a sacrificial agent. The metal sites of metallo-cuboctahedrons adsorb pollutants and transfer captured holes to them, accelerating degradation and promoting simultaneous H2O2 production. This work not only proposes a simple and efficient synthesis method for supramolecular photocatalysts but also opens up opportunities for efficient, low-cost, and multifunctional materials for environmental persistent organic pollutants treatment.

Electronic Supplementary Material

Download File(s)
6629_ESM.pdf (4.2 MB)

References

[1]

Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

[2]

Wang, R. Z.; Huang, D. L.; Liu, Y. G.; Zhang, C.; Lai, C.; Zeng, G. M.; Cheng, M.; Gong, X. M.; Wan, J.; Luo, H. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour. Technol. 2018, 261, 265–271.

[3]

Huang, D. L.; Qin, X. M.; Xu, P.; Zeng, G. M.; Peng, Z. W.; Wang, R. Z.; Wan, J.; Gong, X. M.; Xue, W. J. Composting of 4-nonylphenol-contaminated river sediment with inocula of Phanerochaete chrysosporium. Bioresour. Technol. 2016, 221, 47–54.

[4]

Ding, C. M.; Shi, J. Y.; Wang, Z. L.; Li, C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 675–688.

[5]

Yao, A. M.; Du, Y. X.; Han, M.; Wang, Y.; Hu, J. S.; Zhu, Q. T.; Sheng, H. T.; Zhu, M. Z. Covalence bridge atomically precise metal nanocluster and metal–organic frameworks for enhanced photostability and photocatalysis. Nano Res. 2023, 16, 1527–1532.

[6]

Zhou, P.; Luo, M. C.; Guo, S. J. Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity. Nat. Rev. Chem. 2022, 6, 823–838.

[7]

Xue, Z. H.; Luan, D. Y.; Zhang, H. B.; Lou, X. W. Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6, 92–133.

[8]

Wu, X. J.; Luo, N. C.; Xie, S. J.; Zhang, H. K.; Zhang, Q. H.; Wang, F.; Wang, Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 2020, 49, 6198–6223.

[9]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[10]

Coutard, N.; Reuillard, B.; Huan, T. N.; Valentino, F.; Jane, R. T.; Gentil, S.; Andreiadis, E. S.; Le Goff, A.; Asset, T.; Maillard, F. et al. Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes. Chem Catal. 2021, 1, 88–105.

[11]

Gu, C.; Liu, Y. Q.; Liu, G. Q.; Xu, H. M.; Li, Y.; Zhang, X. L.; Wu, L.; Shi, L.; Han, S. K.; Gao, M. R. et al. Modular divergent creation of dual-cocatalysts integrated semiconducting sulfide nanotriads for enhanced photocatalytic hydrogen evolution. Nano Res. 2023, 16, 7967–7973.

[12]

Wu, L.; Wang, Q.; Zhuang, T. T.; Li, Y.; Zhang, G. Z.; Liu, G. Q.; Fan, F. J.; Shi, L.; Yu, S. H. Single crystalline quaternary sulfide nanobelts for efficient solar-to-hydrogen conversion. Nat. Commun. 2020, 11, 5194.

[13]

Xia, C. K.; Wang, H.; Kim, J. K.; Wang, J. Y. Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv. Funct. Mater. 2021, 31, 2008247.

[14]

Feng, Y.; Ma, P. J.; Wang, Z. W.; Shi, Y. J.; Wang, Z. H.; Peng, Y.; Jing, L.; Liu, Y. X.; Yu, X. H.; Wang, X. et al. Synergistic effect of reactive oxygen species in photothermocatalytic removal of VOCs from cooking oil fumes over Pt/CeO2/TiO2. Environ. Sci. Technol. 2022, 56, 17341–17351.

[15]

Deng, Y. C.; Liu, J.; Huang, Y. B.; Ma, M. M.; Liu, K.; Dou, X. M.; Wang, Z. J.; Qu, S. C.; Wang, Z. G. Engineering the photocatalytic behaviors of g/C3N4-based metal-free materials for degradation of a representative antibiotic. Adv. Funct. Mater. 2020, 30, 2002353.

[16]

Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

[17]

Yu, Y. T.; Wu, K.; Xu, W. C.; Chen, D. D.; Fang, J. Z.; Zhu, X. M.; Sun, J. L.; Liang, Y.; Hu, X. Y.; Li, R. Q. et al. Adsorption–photocatalysis synergistic removal of contaminants under antibiotic and Cr(VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method. J. Hazard. Mater. 2021, 404, 124171.

[18]

Wang, Y. Y.; Qu, Y.; Qu, B. H.; Bai, L. L.; Liu, Y.; Yang, Z. D.; Zhang, W.; Jing, L. Q.; Fu, H. G. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 2021, 33, 2105482.

[19]

Teixeira, I. F.; Barbosa, E. C. M.; Tsang, S. C. E.; Camargo, P. H. C. Carbon nitrides and metal nanoparticles: From controlled synthesis to design principles for improved photocatalysis. Chem. Soc. Rev. 2018, 47, 7783–7817.

[20]

Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.

[21]

Liu, C.; Bao, T.; Yuan, L.; Zhang, C. Q.; Wang, J.; Wan, J. J.; Yu, C. Z. Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: Heterojunction coverage matters. Adv. Funct. Mater. 2022, 32, 2111404.

[22]

Shi, X. F.; Zhang, J. H.; Cui, G. W.; Deng, N.; Wang, W.; Wang, Q.; Tang, B. Photocatalytic H2 evolution improvement for H free-radical stabilization by electrostatic interaction of a Cu-BTC MOF with ZnO/GO. Nano Res. 2018, 11, 979–987.

[23]

Qian, Y. T.; Zhang, F. F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231.

[24]

You, J. H.; Zhao, Y.; Wang, L.; Bao, W. T. Recent developments in the photocatalytic applications of covalent organic frameworks: A review. J. Clean. Prod. 2021, 291, 125822.

[25]

Wang, H. Q. Nanostructure@metal–organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[26]

He, S. J.; Zeng, T.; Wang, S. H.; Niu, H. Y.; Cai, Y. Q. Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets. ACS Appl. Mater. Interfaces 2017, 9, 2959–2965.

[27]

Sui, J.; Liu, H.; Hu, S. J.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H. L. A general strategy to immobilize single-atom catalysts in metal–organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.

[28]

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

[29]

Yang, Y. L.; Wang, Y. R.; Dong, L. Z.; Li, Q.; Zhang, L.; Zhou, J.; Sun, S. N.; Ding, H. M.; Chen, Y. F.; Li, S. L. et al. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv. Mater. 2022, 34, 2206706.

[30]

Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

[31]

Ong, W. J.; Putri, L. K.; Tan, Y. C.; Tan, L. L.; Li, N.; Ng, Y. H.; Wen, X. M.; Chai, S. P. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res. 2017, 10, 1673–1696.

[32]

Hu, H. H.; Wang, Z. Y.; Cao, L. Y.; Zeng, L. Z.; Zhang, C. K.; Lin, W. B.; Wang, C. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 2021, 13, 358–366.

[33]

Soe, E.; Ehlke, B.; Oliver, S. R. J. A cationic silver pyrazine coordination polymer with high capacity anion uptake from water. Environ. Sci. Technol. 2019, 53, 7663–7672.

[34]

Li, L. Y.; Li, Z. X.; Yang, W. J.; Huang, Y. M.; Huang, G.; Guan, Q. Q.; Dong, Y. M.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021, 7, 686–698.

[35]

Xiang, B.; Gong, J. L.; Sun, Y. Q.; Li, J. Robust PVA/GO@MOF membrane with fast photothermal self-cleaning property for oily wastewater purification. J. Hazard. Mater. 2024, 462, 132803.

[36]

He, Y. L.; Luo, D.; Lynch, V. M.; Ahmed, M.; Sessler, J. L.; Chi, X. D. Porous adaptive luminescent metallacage for the detection and removal of perfluoroalkyl carboxylic acids. Chem 2023, 9, 93–101.

[37]

Zhang, P.; Luan, D. Y.; Lou, X. W. Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation. Adv. Mater. 2020, 32, 2004561.

[38]

Zhang, Z. Y.; Zhao, Z. Q.; Hou, Y. L.; Wang, H.; Li, X. P.; He, G.; Zhang, M. M. Aqueous platinum(II)-cage-based light-harvesting system for photocatalytic cross-coupling hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 8862–8866.

[39]

Ham, R.; Nielsen, C. J.; Pullen, S.; Reek, J. N. H. Supramolecular coordination cages for artificial photosynthesis and synthetic photocatalysis. Chem. Rev. 2023, 123, 5225–5261.

[40]

Mu, C. Q.; Zhang, L.; Li, G. P.; Hou, Y. L.; Liu, H. F.; Zhang, Z. Y.; Zhang, R. Q.; Gao, T. T.; Qian, Y. C.; Guo, C. X. et al. Isoreticular preparation of tetraphenylethylene-based multicomponent metallacages towards light-driven hydrogen production. Angew. Chem., Int. Ed. 2023, 62, e202311137.

[41]

Mauter, M. S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859.

[42]

Ji, C. Q.; Wang, W. J.; El-Sayed, E. S. M.; Liu, G. L.; Si, Y. N.; Su, K. Z.; Ju, Z. F.; Wu, F.; Yuan, D. Q. A high-efficiency dye-sensitized Pt(II) decorated metal–organic cage for visible-light-driven hydrogen production. Appl. Catal. B: Environ. 2021, 285, 119782.

[43]

Wu, K.; Li, K.; Chen, S.; Hou, Y. J.; Lu, Y. L.; Wang, J. S.; Wei, M. J.; Pan, M.; Su, C. Y. The redox coupling effect in a photocatalytic RuII-PdII cage with TTF guest as electron relay mediator for visible-light hydrogen-evolving promotion. Angew. Chem., Int. Ed. 2020, 59, 2639–2643.

[44]

Lee, H. S.; Jee, S.; Kim, R.; Bui, H. T.; Kim, B.; Kim, J. K.; Park, K. S.; Choi, W.; Kim, W.; Choi, K. M. A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO2 reduction. Energy Environ. Sci. 2020, 13, 519–526.

[45]

Fang, Y.; Li, J. L.; Togo, T.; Jin, F. Y.; Xiao, Z. F.; Liu, L. J.; Drake, H.; Lian, X. Z.; Zhou, H. C. Ultra-small face-centered-cubic Ru nanoparticles confined within a porous coordination cage for dehydrogenation. Chem 2018, 4, 555–563.

[46]

Zhang, Z.; Huang, Y.; Bai, Q. X.; Wu, T.; Jiang, Z. Y.; Su, H. Y.; Zong, Y. X.; Wang, M.; Su, P. Y.; Xie, T. Z. et al. Aggregation-induced emission metallocuboctahedra for white light devices. JACS Au 2022, 2, 2809–2820.

[47]

Chan, Y. T.; Li, X. P.; Yu, J.; Carri, G. A.; Moorefield, C. N.; Newkome, G. R.; Wesdemiotis, C. Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. J. Am. Chem. Soc. 2011, 133, 11967–11976.

[48]

Li, T.; Zhang, X. H.; Hu, C.; Li, X. Y.; Zhang, P.; Chen, Z. H. Porous carbon-doped g-C3N4 with tunable band structure for boosting photocatalytic H2O2 production with simultaneous pollutants removal. J. Environ. Chem. Eng. 2022, 10, 107116.

[49]

Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985–993.

[50]

Krishnaraj, C.; Sekhar Jena, H.; Bourda, L.; Laemont, A.; Pachfule, P.; Roeser, J.; Chandran, C. V.; Borgmans, S.; Rogge, S. M. J.; Leus, K. et al. Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J. Am. Chem. Soc. 2020, 142, 20107–20116.

[51]

He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z. Y.; Zhang, J.; Yu, X. H.; Hu, Y. P.; Huang, W.; Li, Y. G. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res. 2023, 16, 4524–4530.

[52]

Wang, H.; Zhang, X. D.; Xie, J. F.; Zhang, J. J.; Ma, P.; Pan, B. C.; Xie, Y. Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity. Nanoscale 2015, 7, 5152–5156.

[53]

Kumar, S.; Reddy, N. L.; Kumar, A.; Shankar, M. V.; Krishnan, V. Two dimensional N-doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 3988–4002.

[54]

Wang, H. W.; Zheng, W. Q.; Li, W. B.; Tian, F. H.; Kuang, S. P.; Bu, Y. Y.; Ao, J. P. Control the energy band potential of ZnMgO solid solution with enhanced photocatalytic hydrogen evolution capacity. Appl. Catal. B: Environ. 2017, 217, 523–529.

[55]

Zhang, J.; Zhang, G.; Ji, Q. H.; Lan, H. C.; Qu, J. H.; Liu, H. J. Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation. Appl. Catal. B: Environ. 2020, 266, 118665.

[56]

Jing, M. Y.; Zhao, H.; Jian, L.; Pan, C. S.; Dong, Y. M.; Zhu, Y. F. Coral-like B-doped g-C3N4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. J. Hazard. Mater. 2023, 449, 131017.

[57]

Hu, X. Y.; Zeng, X. K.; Liu, Y.; Lu, J.; Zhang, X. W. Carbon-based materials for photo- and electrocatalytic synthesis of hydrogen peroxide. Nanoscale 2020, 12, 16008–16027.

[58]

Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.

Nano Research
Pages 6833-6840
Cite this article:
Bai Q, Huang Y, Chen Z, et al. Terpyridine-based metallo-cuboctahedron nanomaterials for efficient photocatalytic degradation of persistent organic pollutants. Nano Research, 2024, 17(8): 6833-6840. https://doi.org/10.1007/s12274-024-6629-y
Topics:

274

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 January 2024
Revised: 04 March 2024
Accepted: 11 March 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return