AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Nanozyme catalysis in a crowded environment: The impact of diffusion and surface shielding

Vasily G. PanferovJuewen Liu( )
Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
Show Author Information

Graphical Abstract

This paper evaluates the impact of macromolecular components on the catalytic activity ofoxidoreductase-mimicking nanozymes. We confirmed that slowed diffusion and surfaceshielding are two mechanisms that significantly reduce the catalytic activity.

Abstract

Nanozymes are widely used in various applications as nanosized catalysts for replacing enzymes. An accurate estimation of the catalytic activity of nanozymes in real conditions is critical. In this article, for the first time, we systematically studied the effect of macromolecular molecules co-existing in the real system on the oxidoreductase (peroxidase, oxidase, and catalase)-mimicking nanozymes made of a gold nanoparticle core and a platinum shell, Prussian Blue, Mn2O3 and CoO nanoparticles. Comparisons were made with horseradish peroxidase. We distinguished two main mechanisms of the negative impact of macromolecules on nanozyme catalysis—slowed diffusion and surface shielding of nanoparticles. While the first mechanism is typical for enzymes, the second one is specific only for nanozymes. Understanding the mechanisms is essential for developing approaches to reduce the unavoidable impact of macromolecules for various analytical and biomedical applications.

Electronic Supplementary Material

Download File(s)
6630_ESM.pdf (2.4 MB)

References

[1]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[2]

Zandieh, M.; Liu, J. W. Nanozymes: Definition, activity, and mechanisms. Adv. Mater. 2024, 36, 2211041.

[3]

Wang, M. T.; Liu, H. X.; Fan, K. L. Signal amplification strategy design in nanozyme-based biosensors for highly sensitive detection of trace biomarkers. Small Methods 2023, 7, 2301049.

[4]

Cao, C. Y.; Yang, N.; Wang, X. R.; Shao, J. J.; Song, X. J.; Liang, C.; Wang, W. J.; Dong, X. C. Biomedicine meets nanozyme catalytic chemistry. Coord. Chem. Rev. 2023, 491, 215245.

[5]

Hong, J. J.; Guo, Z. J.; Duan, D. H.; Zhang, Y.; Chen, X.; Li, Y. J.; Tu, Z.; Feng, L.; Chen, L.; Yan, X. Y. et al. Highly sensitive nanozyme strip: An effective tool for forensic material evidence identification. Nano Res. 2024, 17, 1785–1791.

[6]

Leeman, M.; Choi, J.; Hansson, S.; Storm, M. U.; Nilsson, L. Proteins and antibodies in serum, plasma, and whole blood-size characterization using asymmetrical flow field-flow fractionation (AF4). Anal. Bioanal. Chem. 2018, 410, 4867–4873.

[7]

Kuznetsova, I. M.; Turoverov, K. K.; Uversky, V. N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci. 2014, 15, 23090–23140.

[8]

Wilcox, X. E.; Chung, C. B.; Slade, K. M. Macromolecular crowding effects on the kinetics of opposing reactions catalyzed by alcohol dehydrogenase. Biochem. Biophys. Rep. 2021, 26, 100956.

[9]

Wilcox, X. E.; Ariola, A.; Jackson, J. R.; Slade, K. M. Overlap concentration and the effect of macromolecular crowding on citrate synthase activity. Biochemistry 2020, 59, 1737–1746.

[10]

Loynachan, C. N.; Thomas, M. R.; Gray, E. R.; Richards, D. A.; Kim, J.; Miller, B. S.; Brookes, J. C.; Agarwal, S.; Chudasama, V.; McKendry, R. A. et al. Platinum nanocatalyst amplification: Redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 2018, 12, 279–288.

[11]

McVey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019, 12, 509–516.

[12]

Chen, Z.; Yu, Y. X.; Gao, Y. H.; Zhu, Z. L. Rational design strategies for nanozymes. ACS Nano 2023, 17, 13062–13080.

[13]

Mao, M.; Guan, X. J.; Wu, F.; Ma, L. CoO nanozymes with multiple catalytic activities regulate atopic dermatitis. Nanomaterials 2022, 12, 638.

[14]

Zhao, X.; Zhao, S.; Li, S.; Yao, X. X.; Zhu, X. X.; Chen, W.; Fan, G. C.; Liu, Z. X.; Liu, Q. Y.; Yue, K. CoO nanotubes loaded on graphene and modified with porphyrin moieties for colorimetric sensing of dopamine. ACS Appl. Nano Mater. 2021, 4, 8706–8715.

[15]

Zhang, A. M.; Zhang, Q.; Alfranca, G.; Pan, S. J.; Huang, Z. C.; Cheng, J.; Ma, Q.; Song, J.; Pan, Y. X.; Ni, J. et al. GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like Au/Pt enzyme carrier system. Nano Res. 2020, 13, 160–172.

[16]

Panferov, V. G.; Safenkova, I. V.; Zherdev, A. V.; Dzantiev, B. B. The steadfast Au@Pt soldier: Peroxide-tolerant nanozyme for signal enhancement in lateral flow immunoassay of peroxidase-containing samples. Talanta 2021, 225, 121961.

[17]

Chen, J. X.; Wang, Q. Q.; Huang, L.; Zhang, H.; Rong, K.; Zhang, H.; Dong, S. J. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res. 2018, 11, 4905–4913.

[18]

Ellis, R. J.; Minton, A. P. Join the crowd. Nature 2003, 425, 27–28.

[19]

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

[20]

Tang, G. H.; He, J. Y.; Liu, J. W.; Yan, X. Y.; Fan, K. L. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89.

[21]

Zhang, Y. N.; Jin, Y. L.; Cui, H. X.; Yan, X. Y.; Fan, K. L. Nanozyme-based catalytic theranostics. RSC Adv. 2020, 10, 10–20.

[22]

Garehbaghi, S.; Ashrafi, A. M.; Adam, V.; Richtera, L. Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay. Mater. Today Bio 2023, 20, 100656.

[23]

Hegedus, L. L.; McCabe, R. W. Catalyst poisoning. Stud. Surf. Sci. Catal. 1980, 6, 471–505.

[24]

de Montellano, P. R. O.; David, S. K.; Ator, M. A.; Tew, D. Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of meso-azidoprotoporphyrin IX. Biochemistry 1988, 27, 5470–5476.

[25]

Panferov, V. G.; Safenkova, I. V.; Zherdev, A. V.; Dzantiev, B. B. Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: Impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Microchim. Acta 2020, 187, 268.

[26]

Xu, Y.; Xue, J.; Zhou, Q.; Zheng, Y. J.; Chen, X. H.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug-drug interactions. Angew. Chem., Int. Ed. 2020, 59, 14498–14503.

[27]
Chen, R.; Chen, X. R.; Zhou, Y. F.; Lin, T.; Leng, Y. K.; Huang, X. L.; Xiong, Y. H. “Three-in-one” multifunctional nanohybrids with colorimetric magnetic catalytic activities to enhance immunochromatographic diagnosis. ACS Nano 2022 , 16, 3351–3361.
[28]

Liu, B. W.; Sun, Z. Y.; Huang, P. J. J.; Liu, J. W. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295.

[29]

Panferov, V. G.; Byzova, N. A.; Biketov, S. F.; Zherdev, A. V.; Dzantiev, B. B. Comparative study of in situ techniques to enlarge gold nanoparticles for highly sensitive lateral flow immunoassay of SARS-CoV-2. Biosensors 2021, 11, 229.

[30]

Phan, L. M. T.; Kim, E. B.; Cheon, S. A.; Shim, T. S.; Kim, H. J.; Park, T. J. Reliable naked-eye detection of Mycobacterium tuberculosis antigen 85B using gold and copper nanoshell-enhanced immunoblotting techniques. Sens. Actuators B: Chem. 2020, 317, 128220.

[31]

Bu, T.; Huang, Q.; Yan, L. Z.; Huang, L. J.; Zhang, M. Y.; Yang, Q. F.; Yang, B. W.; Wang, J. L.; Zhang, D. H. Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth. Food Control 2018, 84, 536–543.

[32]

Yang, W.; Li, X. B.; Liu, G. W.; Zhang, B. B.; Zhang, Y.; Kong, T.; Tang, J. J.; Li, D. N.; Wang, Z. A colloidal gold probe-based silver enhancement immunochromatographic assay for the rapid detection of abrin-A. Biosens. Bioelectron. 2011, 26, 3710–3713.

[33]

Huang, D.; Lin, B. Q.; Song, Y. L.; Guan, Z. C.; Cheng, J.; Zhu, Z.; Yang, C. Y. Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readout. ACS Appl. Mater. Interfaces 2019, 11, 1800–1806.

[34]

Li, J. X.; Liu, F.; Zhu, Z.; Liu, D.; Chen, X. F.; Song, Y. L.; Zhou, L. J.; Yang, C. Y. In situ Pt staining method for simple, stable, and sensitive pressure-based bioassays. ACS Appl. Mater. Interfaces 2018, 10, 13390–13396.

[35]

Fu, J. M.; Zhou, Y. F.; Huang, X. L.; Zhang, W. J.; Wu, Y. H.; Fang, H.; Zhang, C. Z.; Xiong, Y. H. Dramatically enhanced immunochromatographic assay using cascade signal amplification for ultrasensitive detection of Escherichia coli O157: H7 in milk. J. Agric. Food Chem. 2020, 68, 1118–1125.

[36]
Chen, C. Y.; Chen, Y. W.; Wang, X. H.; Zhang, L. L.; Luo, Y.; Tang, Q. S.; Wang, Y.; Liang, X. L.; Ma, C. In situ synthesized nanozyme for photoacoustic-imaging-guided photothermal therapy and tumor hypoxia relief. iScience 2023 , 26, 106066.
[37]

Keum, C.; Hirschbiegel, C. M.; Chakraborty, S.; Jin, S.; Jeong, Y.; Rotello, V. M. Biomimetic and bioorthogonal nanozymes for biomedical applications. Nano Converg. 2023, 10, 42.

[38]

Zhang, R. F.; Yan, X. Y.; Fan, K. L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021, 2, 534–547.

[39]

Gao, Z. Q.; Ye, H. H.; Tang, D. Y.; Tao, J.; Habibi, S.; Minerick, A.; Tang, D. P.; Xia, X. H. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017, 17, 5572–5579.

[40]

Panferov, V. G.; Byzova, N. A.; Zherdev, A. V.; Dzantiev, B. B. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Microchim. Acta 2021, 188, 309.

Nano Research
Pages 5795-5800
Cite this article:
Panferov VG, Liu J. Nanozyme catalysis in a crowded environment: The impact of diffusion and surface shielding. Nano Research, 2024, 17(7): 5795-5800. https://doi.org/10.1007/s12274-024-6630-5
Topics:

400

Views

2

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 January 2024
Revised: 29 February 2024
Accepted: 12 March 2024
Published: 04 April 2024
© Tsinghua University Press 2024
Return