AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

An aptamer-driven DNA nanodevice for improved delivery of synthetic immunostimulants

Dejie Lu1,2Zhenghan Di2( )Lele Li2Jian Zhao2( )Li Zheng1( )
Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Efficient delivery of therapeutics to immune cells remains a formidable challenge for cancer immunotherapy. In this work, we demonstrate that an aptamer-driven DNA nanodevice, constructed through linkage of a synthetic immunostimulant (Toll-like receptor 9 agonist: CpG motif) to an aptamer, could significantly enhance the immunostimulatory activity by facilitating the uptake and retention of therapeutics in macrophages. Systemic administration of the DNA nanodevice results in efficient tumor growth inhibition in both breast cancer and melanoma mouse models. Our studies suggest that the DNA nanodevice leads to re-education of tumor-associated macrophages and ultimately to reversing the tumor immune microenvironment. The strategy for aptamer-mediated and vehicle-free delivery of immunostimulatory oligonucleotides provides a potential platform for cancer immunotherapy.

Electronic Supplementary Material

Download File(s)
6632_ESM.pdf (269 KB)

References

[1]

Yang, Y. P. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest. 2015, 125, 3335–3337.

[2]

Liu, S. L.; Jiang, Q.; Zhao, X.; Zhao, R. F.; Wang, Y. N.; Wang, Y. M.; Liu, J. B.; Shang, Y. X.; Zhao, S.; Wu, T. T. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 2021, 20, 421–430.

[3]

Zhang, C.; Pu, K. Y. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem. Soc. Rev. 2020, 49, 4234–4253.

[4]
Ren, F. Q.; Wang, F. F.; Baghdasaryan, A.; Li, Y.; Liu, H. R.; Hsu, R.; Wang, C. C.; Li, J. C.; Zhong, Y. T.; Salazar, F. et al. Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines and the elicited immune responses. Nat. Biomed. Eng., in press, https://doi.org/10.1038/s41551-023-01083-5.
[5]

Wang, C.; Sun, W. J.; Wright, G.; Wang, A. Z.; Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 2016, 28, 8912–8920.

[6]

Klinman, D. M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 2004, 4, 249–259.

[7]

Liu, M. G.; O’Connor, R. S.; Trefely, S.; Graham, K.; Snyder, N. W.; Beatty, G. L. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated “don’t-eat-me” signal. Nat. Immunol. 2019, 20, 265–275.

[8]

Chao, Y.; Xu, L. G.; Liang, C.; Feng, L. Z.; Xu, J.; Dong, Z. L.; Tian, L. L.; Yi, X.; Yang, K.; Liu, Z. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2018, 2, 611–621.

[9]

Zheng, L. Y.; Hu, X. X.; Wu, H.; Mo, L. T.; Xie, S. T.; Li, J.; Peng, C.; Xu, S. J.; Qiu, L. P.; Tan, W. H. In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy. J. Am. Chem. Soc. 2020, 142, 382–391.

[10]

Lake, R. J.; Yang, Z. L.; Zhang, J. J.; Lu, Y. DNAzymes as activity-based sensors for metal ions: Recent applications, demonstrated advantages, current challenges, and future directions. Acc. Chem. Res. 2019, 52, 3275–3286.

[11]

Peng, H. Y.; Li, X. F.; Zhang, H. Q.; Le, X. C. A microRNA-initiated DNAzyme motor operating in living cells. Nat. Commun. 2017, 8, 14378.

[12]

Briley, W. E.; Bondy, M. H.; Randeria, P. S.; Dupper, T. J.; Mirkin, C. A. Quantification and real-time tracking of RNA in live cells using sticky-flares. Proc. Natl. Acad. Sci. USA 2015, 112, 9591–9595.

[13]

Sheng, C. G.; Zhao, J.; Di, Z. H.; Huang, Y. Y.; Zhao, Y. L.; Li, L. L. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon. Nat. Biomed. Eng. 2022, 6, 1074–1084.

[14]

Li, M. Y.; Li, L. L. Enzyme-triggered DNA sensor technology for spatially-controlled, cell-selective molecular imaging. Acc. Chem. Res. 2023, 56, 1482–1493.

[15]

Mao, X. H.; Liu, M. M.; Li, Q.; Fan, C. H.; Zuo, X. L. DNA-based molecular machines. JACS Au 2022, 2, 2381–2399.

[16]

Zheng, J.; Wang, Q. W.; Shi, L.; Peng, P.; Shi, L. L.; Li, T. Logic-gated proximity aptasensing for cell-surface real-time monitoring of apoptosis. Angew. Chem., Int. Ed. 2021, 60, 20858–20864.

[17]

Lin, M. J.; Chen, Y. Y.; Zhao, S. S.; Tang, R.; Nie, Z.; Xing, H. A biomimetic approach for spatially controlled cell membrane engineering using fusogenic spherical nucleic acid. Angew. Chem., Int. Ed. 2022, 61, e202111647.

[18]

Douglas, S. M.; Bachelet, I.; Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012, 335, 831–834.

[19]

Hu, Q. Q.; Li, H.; Wang, L. H.; Gu, H. Z.; Fan, C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019, 119, 6459–6506.

[20]

Jiang, Y.; Pan, X. S.; Chang, J.; Niu, W. J.; Hou, W. J.; Kuai, H. L.; Zhao, Z. L.; Liu, J.; Wang, M.; Tan, W. H. Supramolecularly engineered circular bivalent aptamer for enhanced functional protein delivery. J. Am. Chem. Soc. 2018, 140, 6780–6784.

[21]

Hermann, T.; Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825.

[22]

Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403

[23]

Mayer, G.; Ahmed, M. S. L.; Dolf, A.; Endl, E.; Knolle, P. A.; Famulok, M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 2010, 5, 1993–2004.

[24]

Sefah, K.; Shangguan, D. H.; Xiong, X. L.; O’Donoghue, M. B.; Tan, W. H. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 2010, 5, 1169–1185.

[25]

Bunka, D. H. J.; Stockley, P. G. Aptamers come of age—At last. Nat. Rev. Microbiol. 2006, 4, 588–596.

[26]

Liu, R.; Liu, Z.; Chen, M. H.; Xing, H.; Zhang, P. H.; Zhang, J. J. Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy. Chem. Sci. 2024, 15, 134–145.

[27]

Yan, J. C.; Gao, T.; Lu, Z. Z.; Yin, J. B.; Zhang, Y.; Pei, R. J. Aptamer-targeted photodynamic platforms for tumor therapy. ACS Appl. Mater. Interfaces 2021, 13, 27749–27773.

[28]

Lao, Y. H.; Phua, K. K. L.; Leong, K. W. Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation. ACS Nano 2015, 9, 2235–2254.

[29]

Wang, G. A.; Wu, X. H.; Chen, F. F.; Shen, C. L.; Yang, Q. F.; Li, F. Toehold-exchange-based activation of aptamer switches enables high thermal robustness and programmability. J. Am. Chem. Soc. 2023, 145, 2750–2753.

[30]

Wei, Y. R.; Long, S. Y.; Zhao, M.; Zhao, J. F.; Zhang, Y.; He, W.; Xiang, L. M.; Tan, J.; Ye, M.; Tan, W. H. et al. Regulation of cellular signaling with an aptamer inhibitor to impede cancer metastasis. J. Am. Chem. Soc. 2024, 146, 319–329.

[31]

Zhu, G. Z.; Zheng, J.; Song, E. Q.; Donovan, M.; Zhang, K. J.; Liu, C.; Tan, W. H. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA 2013, 110, 7998–8003.

[32]

Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

[33]

Ouyang, C. H.; Zhang, S. B.; Xue, C.; Yu, X.; Xu, H.; Wang, Z. M.; Lu, Y.; Wu, Z. S. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J. Am. Chem. Soc. 2020, 142, 1265–1277.

[34]

Zhou, F.; Wang, P.; Peng, Y. B.; Zhang, P. G.; Huang, Q.; Sun, W. D.; He, N. Y.; Fu, T.; Zhao, Z. L.; Fang, X. H. et al. Molecular engineering-based aptamer-drug conjugates with accurate tunability of drug ratios for drug combination targeted cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 11661–11665.

[35]

Zhang, L.; Chu, M. G.; Ji, C. L.; Tan, J.; Yuan, Q. Preparation, applications, and challenges of functional DNA nanomaterials. Nano Res. 2023, 16, 3895–3912.

[36]

Dassie, J. P.; Liu, X. Y.; Thomas, G. S.; Whitaker, R. M.; Thiel, K. W.; Stockdale, K. R.; Meyerholz, D. K.; McCaffrey, A. P.; McNamara, J. O.; Giangrande, P. H. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 2009, 27, 839–849.

[37]

Xie, S. T.; Sun, W. D.; Fu, T.; Liu, X. S.; Chen, P.; Qiu, L. P.; Qu, F. L.; Tan, W. H. Aptamer-based targeted delivery of functional nucleic acids. J. Am. Chem. Soc. 2023, 145, 7677–7691.

[38]

Liang, C.; Guo, B. S.; Wu, H.; Shao, N. S.; Li, D. F.; Liu, J.; Dang, L.; Wang, C.; Li, H.; Li, S. H. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med. 2015, 21, 288–294.

[39]

Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.

[40]

Wang, P.; Zhou, F.; Yin, X.; Xie, Q. J.; Song, G. S.; Zhang, X. B. Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Res. 2022, 15, 9264–9273.

[41]

Fang, X.; Yuan, M.; Dai, J. D.; Lin, Q. Y.; Lin, Y. H.; Wang, W. L.; Jiang, Y. F.; Wang, H. H.; Zhao, F.; Wu, J. Y. et al. Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy. Nano Res. 2022, 15, 6278–6287.

[42]

Di, Z. H.; Liu, B.; Zhao, J.; Gu, Z. J.; Zhao, Y. L.; Li, L. L. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Sci. Adv. 2020, 6, eaba9381.

[43]

Hu, X. X.; Chi, H. L.; Fu, X. Y.; Chen, J. L.; Dong, L. Y.; Jiang, S. Q.; Li, Y.; Chen, J. Y.; Cheng, M.; Min, Q. H. et al. Tunable multivalent aptamer-based DNA nanostructures to regulate multiheteroreceptor-mediated tumor recognition. J. Am. Chem. Soc. 2024, 146, 2514–2523.

[44]

Tang, W. T.; Tong, T.; Wang, H.; Lu, X. H.; Yang, C. P.; Wu, Y. S.; Wang, Y. A.; Liu, J. B.; Ding, B. Q. A DNA origami-based gene editing system for efficient gene therapy in vivo. Angew. Chem., Int. Ed. 2023, 62, e202315093.

Nano Research
Cite this article:
Lu D, Di Z, Li L, et al. An aptamer-driven DNA nanodevice for improved delivery of synthetic immunostimulants. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6632-3
Topics:
Part of a topical collection:

345

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 16 February 2024
Revised: 11 March 2024
Accepted: 12 March 2024
Published: 30 April 2024
© Tsinghua University Press 2024
Return