AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Coordination-environment regulation of atomic Co-Mn dual-sites for efficient oxygen reduction reaction

Caiting Sun1Yarong Liu1Zunhang Lv1Rui Liu1Changli Wang1Liuhua Li1Jinming Wang1Yu Zhang2Wenxiu Yang1( )Bo Wang1( )
Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Institute of Technology Library, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

A novel diatomic catalyst (CoMn-N/S-C) with a unique CoN3S-MnN2S2 coordination configuration was designed by packaging–adsorption–pyrolysis strategy. Due to the introduction of Mn and S, the desorption behavior of *OH intermediate at the Co site was optimized, thus increasing oxygen reduction reaction (ORR) activity and obtaining zinc-air batteries with excellent peak power density.

Abstract

Precisely designing atomic metal-nitrogen-carbon (M-N-C) catalysts with asymmetric diatomic configurations and studying their structure–activity relationships for oxygen reduction reaction (ORR) are important for zinc-air batteries (ZABs). Herein, a dual-atomic-site catalyst (DASC) with CoN3S-MnN2S2 configuration was prepared for the cathodes of ZABs. Compared with Co-N-C (Mn-free) and CoMn-N-C (S-free doping), CoMn-N/S-C exhibits excellent half-wave potential (0.883 V) and turnover frequency (1.54 e·s−1·site−1), surpassing most of the reported state-of-the-art Pt-free ORR catalysts. The CoMn-N/S-C-based ZABs achieve extremely high specific capacity (959 mAh·g−1) and good stability (350 h@5 mA·cm−2). Density functional theory (DFT) calculation shows that the introduction of Mn and S can break the electron configuration symmetry of the original Co 3d orbital, lower the d-band center of the Co site, and optimize the desorption behavior of *OH intermediate, thereby increasing the ORR activity.

Electronic Supplementary Material

Download File(s)
6633_ESM.pdf (2.6 MB)

References

[1]

Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. A brief history of zinc-air batteries: 140 years of epic adventures. Energy Environ. Sci. 2022, 15, 4542–4553.

[2]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[3]

Li, Z. J.; Ji, S. Q.; Wang, C.; Liu, H. X.; Leng, L. P.; Du, L.; Gao, J. C.; Qiao, M.; Horton, J. H.; Wang, Y. Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 2023, 35, 2300905.

[4]

Tao, L.; Wang, K.; Lv, F.; Mi, H. T.; Lin, F. X.; Luo, H.; Guo, H. Y.; Zhang, Q. H.; Gu, L.; Luo, M. C. et al. Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis. Nat. Commun. 2023, 14, 6893.

[5]

Chen, G. B.; An, Y.; Liu, S. W.; Sun, F. F.; Qi, H. Y.; Wu, H. F.; He, Y. H.; Liu, P.; Shi, R.; Zhang, J. et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 2022, 15, 2619–2628.

[6]

Dong, F. L.; Liu, Y. R.; Lv, Z. H.; Wang, C. L.; Yang, W. X.; Wang, B. The metal–support interaction effect in the carbon-free PEMFC cathode catalysts. J. Mater. Chem. A 2023, 11, 23106–23132.

[7]

Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

[8]

Liu, H.; Jiang, L. Z.; Sun, Y. Y.; Khan, J.; Feng, B.; Xiao, J. M.; Zhang, H. D.; Xie, H. J.; Li, L. N.; Wang, S. Y. et al. Revisiting the role of sulfur functionality in regulating the electron distribution of single-atomic Fe sites toward enhanced oxygen reduction. Adv. Funct. Mater. 2023, 33, 2304074.

[9]

Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

[10]

Zhao, Y. Z.; Zhang, Z. L.; Liu, L.; Wang, Y.; Wu, T.; Qin, W. J.; Liu, S. J.; Jia, B. R.; Wu, H. Y.; Zhang, D. Y. et al. S and O co-coordinated Mo single sites in hierarchically porous tubes from sulfur-enamine copolymerization for oxygen reduction and evolution. J. Am. Chem. Soc. 2022, 144, 20571–20581.

[11]

Masnica, J. P.; Sibt-e-Hassan, S.; Potgieter-Vermaak, S.; Regmi, Y. N.; King, L. A.; Tosheva, L. ZIF-8-derived Fe-C catalysts: Relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 2023, 1, 160–169.

[12]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[13]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[14]

Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang, B. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.

[15]

Yao, W.; Hu, A. Q.; Ding, J. T.; Wang, N. S.; Qin, Z.; Yang, X. F.; Shen, K.; Chen, L. Y.; Li, Y. W. Hierarchically ordered macro-mesoporous electrocatalyst with hydrophilic surface for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2301894.

[16]

Xie, X. Y.; Shang, L.; Xiong, X. Y.; Shi, R.; Zhang, T. R. Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102688.

[17]

Liu, X. J.; Liu, Y. R.; Yang, W. X.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem.—Eur. J. 2022, 28, e202201471.

[18]

Liu, Y. R.; Liu, X. J.; Lv, Z. H.; Liu, R.; Li, L. H.; Wang, J. M.; Yang, W. X.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202117617.

[19]

Zeng, Y. C.; Li, C. Z.; Li, B. Y.; Liang, J. S.; Zachman, M. J.; Cullen, D. A.; Hermann, R. P.; Alp, E. E.; Lavina, B.; Karakalos, S. et al. Tuning the thermal activation atmosphere breaks the activity-stability trade-off of Fe-N-C oxygen reduction fuel cell catalysts. Nat. Catal. 2023, 6, 1215–1227.

[20]

Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

[21]

Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.

[22]

Pedersen, A.; Barrio, J.; Li, A.; Jervis, R.; Brett, D. J. L.; Titirici, M. M.; Stephens, I. E. L. Dual-metal atom electrocatalysts: Theory, synthesis, characterization, and applications. Adv. Energy Mater. 2022, 12, 2102715.

[23]

Liu, Y. R.; Yuan, S.; Sun, C. T.; Wang, C. L.; Liu, X. J.; Lv, Z. H.; Liu, R.; Meng, Y. Z.; Yang, W. X.; Feng, X. et al. Optimizing Fe-3d electron delocalization by asymmetric Fe-Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy Mater. 2023, 13, 2302719.

[24]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[25]

Fu, C.; Qi, X. Q.; Zhao, L.; Yang, T. T.; Xue, Q.; Zhu, Z. Z.; Xiong, P.; Jiang, J. X.; An, X. G.; Chen, H. Y. et al. Synergistic cooperation between atomically dispersed Zn and Fe on porous nitrogen-doped carbon for boosting oxygen reduction reaction. Appl. Catal. B: Environ. 2023, 335, 122875.

[26]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[27]

Liu, M.; Li, N.; Cao, S. F.; Wang, X. M.; Lu, X. Q.; Kong, L. J.; Xu, Y. H.; Bu, X. H. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, 2107421.

[28]

Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

[29]

Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

[30]

Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131.

[31]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[32]

Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.

[33]

Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

[34]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

[35]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[36]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[37]

Wang, J. M.; Liu, X. J.; Li, L. H.; Liu, R.; Liu, Y. R.; Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. Heterogeneous assembling 3D free-standing Co@carbon membrane enabling efficient fluid and flexible zinc-air batteries. Nano Res. 2023, 16, 9327–9334.

[38]

Liu, F.; Shi, L.; Lin, X. N.; Zhang, B.; Long, Y. D.; Ye, F. H.; Yan, R. Q.; Cheng, R. Y.; Hu, C. G.; Liu, D. et al. Fe/Co dual metal catalysts modulated by S-ligands for efficient acidic oxygen reduction in PEMFC. Sci. Adv. 2023, 9, eadg0366.

[39]

Yan, X. X.; Liu, D.; Guo, P. F.; He, Y. F.; Wang, X. Q.; Li, Z. L.; Pan, H. G.; Sun, D. L.; Fang, F.; Wu, R. B. Atomically dispersed Co2MnN8 triatomic sites anchored in N-doped carbon enabling efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2210975.

[40]

Liu, H.; Jiang, L. Z.; Khan, J.; Wang, X. X.; Xiao, J. M.; Zhang, H. D.; Xie, H. J.; Li, L. N.; Wang, S. Y.; Han, L. Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202214988.

[41]

Liu, J. Q.; Chen, W. B.; Yuan, S.; Liu, T.; Wang, Q. High-coordination Fe-N4SP single-atom catalysts via the multi-shell synergistic effect for the enhanced oxygen reduction reaction of rechargeable Zn-air battery cathodes. Energy Environ. Sci. 2024, 17, 249–259.

[42]

Bai, X.; Wang, Y.; Han, J. Y.; Niu, X. D.; Guan, J. Q. Engineering the electronic structure of isolated manganese sites to improve the oxygen reduction, Zn-air battery and fuel cell performances. Appl. Catal. B: Environ. 2023, 337, 122966.

[43]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

[44]

Zhao, C. X.; Liu, X. Y.; Liu, J. N.; Wang, J.; Wan, X.; Li, X. Y.; Tang, C.; Wang, C. D.; Song, L.; Shui, J. L. et al. Inductive effect on single-atom sites. J. Am. Chem. Soc. 2023, 145, 27531–27538.

[45]

Pei, J. J.; Yang, L.; Lin, J.; Zhang, Z. D.; Sun, Z. Y.; Wang, D. S.; Chen, W. X. Integrating host design and tailored electronic effects of yolk–shell Zn-Mn diatomic sites for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2024, 63, e202316123.

[46]

Zhou, S. Z.; Jang, H.; Qin, Q.; Hou, L. Q.; Kim, M. G.; Liu, S. G.; Liu, X. E.; Cho, J. Boosting hydrogen evolution reaction by phase engineering and phosphorus doping on Ru/P-TiO2. Angew. Chem., Int. Ed. 2022, 61, e202212196.

[47]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[48]

Luo, Y. Z.; Wang, P.; Zhang, G. X.; Wu, S. S.; Chen, Z. S.; Ranganathan, H.; Sun, S. H.; Shi, Z. C. Mn-doped nickel-iron phosphide heterointerface nanoflowers for efficient alkaline freshwater/seawater splitting at high current densities. Chem. Eng. J. 2023, 454, 140061.

[49]

Gao, G. P.; Waclawik, E. R.; Du, A. J. Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. J. Catal. 2017, 352, 579–585.

[50]

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

Nano Research
Pages 6841-6848
Cite this article:
Sun C, Liu Y, Lv Z, et al. Coordination-environment regulation of atomic Co-Mn dual-sites for efficient oxygen reduction reaction. Nano Research, 2024, 17(8): 6841-6848. https://doi.org/10.1007/s12274-024-6633-2
Topics:

1107

Views

1

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 21 February 2024
Revised: 09 March 2024
Accepted: 11 March 2024
Published: 18 May 2024
© Tsinghua University Press 2024
Return