AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Plasmon coupling-driven enhanced high-order multiphoton excited fluorescent performance of metal-organic frameworks

Tong Meng1,§Bo Li1,§Linlin Zeng3,§Xianshun Sun2( )Yupeng Tian2Hongping Zhou2Meng Zhou3( )Dandan Li1( )
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

§ Tong Meng, Bo Li, and Linlin Zeng contributed equally to this work.

Show Author Information

Graphical Abstract

This work provides a feasible and practical method to manufacture efficient and simple high-order multiphoton excited fluorescence (MPEF) materials for biological imaging using tissue-penetrating second near-infrared (NIR-II) light, which represents the first report on elaborating the role of plasmon resonance played in multiphoton activity.

Abstract

Accessing high-order multiphoton excited fluorescence (H-MPEF) materials is challenging yet and needs complicated synthesis procedures. In this study, we successfully assembled plasmonic Au nanorods (Au NRs) with multiphoton responsive metal-organic frameworks (MOFs), resulting in a significant several-fold enhancement of H-MPEF. The extent of multiphoton enhancement was found to be strongly dependent on the degree of overlap between the multiphoton excitation wavelength of MOFs and the localized surface plasmon resonance absorbance of Au NRs, indicating the importance of plasmon-induced resonance energy transfer. Besides, plasmon-induced hot electron transfer played a vital role in enhanced multiphoton activity as well. Notably, the optimum H-MPEF enhancement occurs at the second near-infrared (NIR-II) region, which provides a promising platform for fluorescent bioimaging. Our findings provide a feasible and practical method to fabricate optimized H-MPEF materials for biological imaging using tissue-penetrating NIR-II light.

Electronic Supplementary Material

Download File(s)
6635_ESM.pdf (2.2 MB)

References

[1]

Yang, M. W.; Huang, J. G.; Fan, J. L.; Du, J. J.; Pu, K. Y.; Peng, X. J. Chemiluminescence for bioimaging and therapeutics: Recent advances and challenges. Chem. Soc. Rev. 2020, 49, 6800–6815.

[2]

Guo, L.; Wong, M. S. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. Adv. Mater. 2014, 26, 5400–5428.

[3]

Mayder, D. M.; Hojo, R.; Primrose, W. L.; Tonge, C. M.; Hudson, Z. M. Heptazine-based TADF materials for nanoparticle-based nonlinear optical bioimaging. Adv. Funct. Mater. 2022, 32, 2204087.

[4]

Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

[5]

Li, M. F.; Xu, Y. M.; Han, S. G.; Xu, J. L.; Xie, Z. D.; Liu, Y.; Xu, Z. Y.; Hong, M. C.; Luo, J. H.; Sun, Z. H. Giant and broadband multiphoton absorption nonlinearities of a 2D organometallic perovskite ferroelectric. Adv. Mater. 2020, 32, 2002972.

[6]

Gao, Y.; Murai, S.; Shinozaki, K.; Tanaka, K. Up-to-five-photon upconversion from near-infrared to ultraviolet luminescence coupled to aluminum plasmonic lattices. ACS Appl. Mater. Interfaces 2023, 15, 9533–9541.

[7]

He, H. J.; Ma, E.; Chen, X. Y.; Yang, D. R.; Chen, B. L.; Qian, G. D. Single crystal perovskite microplate for high-order multiphoton excitation. Small Methods 2019, 3, 1900396.

[8]

Medishetty, R.; Zaręba, J. K.; Mayer, D.; Samoć, M.; Fischer, R. A. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4976–5004.

[9]

He, H. J.; Cui, Y. J.; Li, B.; Wang, B.; Jin, C. H.; Yu, J. C.; Yao, L. J.; Yang, Y.; Chen, B. L.; Qian, G. D. Confinement of perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence. Adv. Mater. 2019, 31, 1806897.

[10]

Quah, H. S.; Chen, W. Q.; Schreyer, M. K.; Yang, H.; Wong, M. W.; Ji, W.; Vittal, J. J. Multiphoton harvesting metal-organic frameworks. Nat. Commun. 2015, 6, 7954.

[11]

Medishetty, R.; Nemec, L.; Nalla, V.; Henke, S.; Samoć, M.; Reuter, K.; Fischer, R. A. Multi-photon absorption in metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 14743–14748.

[12]

Li, B.; Lu, X.; Tian, Y. P.; Li, D. D. Embedding multiphoton active units within metal-organic frameworks for turning on high-order multiphoton excited fluorescence for bioimaging. Angew. Chem., Int. Ed. 2022, 61, e202206755.

[13]

Zhang, L.; Li, H. J.; He, H. J.; Yang, Y.; Cui, Y. J.; Qian, G. D. Structural variation and switchable nonlinear optical behavior of metal-organic frameworks. Small 2021, 17, 2006649.

[14]

Li, B.; Yu, X. L.; Wang, J. J.; Tang, H.; Sun, X. S.; Cheng, L. J.; Zhou, H. P.; Tian, Y. P.; Li, D. D. Unlocking efficient high-order multiphoton-excited fluorescence of metal-organic framework via octupolar module in situ formation. Adv. Funct. Mater. 2023, 33, 2305391.

[15]

Li, S.; Shen, X. Q.; Xu, Q. H.; Cao, Y. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. Nanoscale 2019, 11, 19551–19560.

[16]

Zhao, T. T.; Li, L.; Li, S.; Jiang, X. F.; Jiang, C. F.; Zhou, N.; Gao, N. Y.; Xu, Q. H. Gold nanorod-enhanced two-photon excitation fluorescence of conjugated oligomers for two-photon imaging guided photodynamic therapy. J. Mater. Chem. C 2019, 7, 14693–14700.

[17]

van der Hoeven, J. E. S.; Gurunarayanan, H.; Bransen, M.; de Winter, D. A. M.; de Jongh, P. E.; van Blaaderen, A. Silica-coated gold nanorod supraparticles: A tunable platform for surface enhanced Raman spectroscopy. Adv. Funct. Mater. 2022, 32, 2200148.

[18]

Liu, X. Y.; Lo, W. S.; Wu, C. H.; Williams, B. P.; Luo, L. S.; Li, Y.; Chou, L. Y.; Lee, Y.; Tsung, C. K. Tuning metal-organic framework nanocrystal shape through facet-dependent coordination. Nano Lett. 2020, 20, 1774–1780.

[19]

Wang, L. C.; Ni, X. J.; Cao, Y. H.; Cao, G. Q. Adsorption behavior of bisphenol A on CTAB-modified graphite. Appl. Surf. Sci. 2018, 428, 165–170.

[20]

Zhang, Z. G.; Guo, Z. L.; Yang, W. S. Cetyltrimethylammonium bromide assisted preparation of Au@SiO2 particles. Colloid Interf. Sci. Commun. 2022, 50, 100662.

[21]

Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 2018, 28, 1705451.

[22]

Kong, L.; Yang, L.; Xin, C. Q.; Zhu, S. J.; Zhang, H. H.; Zhang, M. Z.; Yang, J. X.; Li, L.; Zhou, H. P.; Tian, Y. P. A novel flurophore-cyano-carboxylic-Ag microhybrid: Enhanced two photon absorption for two-photon photothermal therapy of HeLa cancer cells by targeting mitochondria. Biosens Bioelectron, 2018, 108, 14–19.

[23]

Chen, Y. H.; Tamming, R. R.; Chen, K.; Zhang, Z. P.; Liu, F. J.; Zhang, Y. F.; Hodgkiss, J. M.; Blaikie, R. J.; Ding, B. Y.; Qiu, M. Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nat. Commun. 2021, 12, 4332.

[24]

Li, M. Y.; Gong, C. T.; Du, J. W.; Ding, D. B.; Du, D. D.; Wang, D. F.; Jiang, J. R.; Li, T. T.; Zheng, C.; Yang, Y. F. et al. Donor–acceptor covalent organic frameworks films with ultralow band gaps to enhanced third-order nonlinear optical properties. ACS Mater. Lett. 2023, 5, 694–703.

[25]

Cushing, S. K.; Li, J. T.; Bright, J.; Yost, B. T.; Zheng, P.; Bristow, A. D.; Wu, N. Q. Controlling Plasmon-induced resonance energy transfer and hot electron injection processes in metal@TiO2 core–shell nanoparticles. J. Phys. Chem. C 2015, 119, 16239–16244.

[26]

Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041.

[27]

Li, J. T.; Cushing, S. K.; Bright, J.; Meng, F. K.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. Q. Ag@Cu2O core–shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 2013, 3, 47–51.

[28]

Zhou, M.; Zeng, C. J.; Chen, Y. X.; Zhao, S.; Sfeir, M. Y.; Zhu, M. Z.; Jin, R. C. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240.

[29]

Chiang, W. Y.; Bruncz, A.; Ostovar, B.; Searles, E. K.; Brasel, S.; Hartland, G.; Link, S. Electron–phonon relaxation dynamics of hot electrons in gold nanoparticles are independent of excitation pathway. J. Phys. Chem. C 2023, 127, 21176–21185.

[30]

Gao, M. Y.; Wang, Z. R.; Li, Q. H.; Li, D. J.; Sun, Y. Y.; Andaloussi, Y. H.; Ma, C.; Deng, C. H.; Zhang, J.; Zhang, L. Black titanium-oxo clusters with ultralow band gaps and enhanced nonlinear optical performance. J. Am. Chem. Soc. 2022, 144, 8153–8161.

Nano Research
Pages 6502-6508
Cite this article:
Meng T, Li B, Zeng L, et al. Plasmon coupling-driven enhanced high-order multiphoton excited fluorescent performance of metal-organic frameworks. Nano Research, 2024, 17(7): 6502-6508. https://doi.org/10.1007/s12274-024-6635-0
Topics:

889

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 16 January 2024
Revised: 05 March 2024
Accepted: 17 March 2024
Published: 19 April 2024
© Tsinghua University Press 2024
Return