AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MOF-templated tubular Ni1−xCoxS2-CdS heterojunction with intensified direct Z-scheme charge transmission for highly promoted visible-light photocatalysis

Chuan Jiang1Yuanxin Qiu1Xinxin Xin1Yanyan Li1Huilin Li1Hui Wang1,2Jixiang Xu1Haifeng Lin1( )Lei Wang1Volodymyr Turkevych3
Key Laboratory of Eco-chemical Engineering, International S & T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
V. Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, Kyiv 04074, Ukraine
Show Author Information

Graphical Abstract

Unique tubular Ni1−xCoxS2-CdS heterojunction with intimate interfacial coupling and intensified direct Z-scheme charge transmission was constructed by an In-metal-organic framework (MOF) templated strategy, achieving an excellent photocatalytic performance for visible-light-induced H2 production.

Abstract

Hollow semiconductor nanostructures with direct Z-scheme heterojunction have significant advantages for photocatalytic reactions, and optimizing the interfacial charge transmission of Z-scheme heterojunction is the hinge to achieve excellent solar conversion efficiency. In this work, tubular Ni1−xCoxS2-CdS heterostructures with reinforced Z-scheme charge transmission were constructed through an In-metal-organic framework (MOF) templated strategy. The Z-scheme charge transfer mechanism was sufficiently confirmed by combining density functional theory (DFT) calculation, X-ray photoelectron spectroscopy (XPS), surface photovoltage spectroscopy (SPV), and radical testing results. Crucially, the use of sodium citrate complexant contributes to the formation of intimate heterointerface, and the Fermi level gap between CdS and NiS2 is enlarged through Co doping into NiS2, which enhances the built-in electric field and photo-carriers transmission driving force for Ni1−xCoxS2-CdS heterojunction, resulting in an evidently promoted activity toward H2 evolution reaction (HER). Under visible-light (λ > 400 nm) irradiation, the Ni1−xCoxS2-CdS composite with 10 mol% Co doping and 80 wt.% CdS (NC0.10S-80% CdS) achieved an outstanding HER rate up to 35.94 mmol·g−1·h−1 (corresponding to the apparent quantum efficiency of 34.7% at 420 nm), approximately 76.4 times that of 3 wt.% Pt-loaded CdS and it is much superior to that of most CdS-based photocatalysts ever reported. Moreover, the good photocatalytic durability of Ni1−xCoxS2-CdS heterostructures was validated by cycling and long-term HER tests. This work could inspire the development of high-performance Z-scheme heterojunction via optimizing the morphology and interfacial charge transmission.

Electronic Supplementary Material

Download File(s)
6636_ESM.pdf (2.8 MB)

References

[1]

Tao, X. P.; Zhao, Y.; Wang, S. Y.; Li, C.; Li, R. G. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608.

[2]

Zhou, P.; Navid, I. A.; Ma, Y. J.; Xiao, Y. X.; Wang, P.; Ye, Z. W.; Zhou, B. W.; Sun, K.; Mi, Z. T. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70.

[3]

Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[4]

Sun, C. Y.; Li, W.; Wang, H. Q. Cascade electrolysis and thermocatalysis: A reliable system for upgrading C1 to C4 hydrocarbons. Rare Met. 2024, 43, 410–412.

[5]

Yang, D. R.; Wang, X. 2D π-conjugated metal-organic frameworks for CO2 electroreduction. SmartMat 2022, 3, 54–67.

[6]

Sun, C. Y.; Li, W.; Wang, K.; Zhou, W. J.; Wang, H. Q. Polyoxometalates-derived nanostructures for electrocatalysis application. Rare Met. 2024, 43, 1845–1866.

[7]

Wei, Y. Z.; Wang, J. Y.; Yu, R. B.; Wan, J. W.; Wang, D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 1422–1426.

[8]

Xiao, M.; Luo, B.; Lyu, M. Q.; Wang, S. C.; Wang, L. Z. Single-crystalline nanomesh tantalum nitride photocatalyst with improved hydrogen-evolving performance. Adv. Energy Mater. 2018, 8, 1701605.

[9]

Zhang, G. X.; Guan, Z. J.; Yang, J. J.; Li, Q. Y.; Zhou, Y.; Zou, Z. G. Metal sulfides for photocatalytic hydrogen production: Current development and future challenges. Solar RRL 2022, 6, 2200587.

[10]

Jaryal, R.; Kumar, R.; Khullar, S. Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions. Coordin. Chem. Rev. 2022, 464, 214542.

[11]

Dai, C. H.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 2020, 13, 24–52.

[12]

Zhang, G. P.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angew. Chem., Int. Ed. 2020, 59, 8255–8261.

[13]

Zhu, Q. H.; Xu, Q.; Du, M. M.; Zeng, X. F.; Zhong, G. F.; Qiu, B. C.; Zhang, J. L. Recent progress of metal sulfide photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2202929.

[14]

Xiao, M.; Wang, Z. L.; Lyu, M. Q.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

[15]

Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

[16]

Wei, Y. Z.; Yang, N. L.; Huang, K. K.; Wan, J. W.; You, F. F.; Yu, R. B.; Feng, S. H.; Wang, D. Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport. Adv. Mater. 2020, 32, 2002556.

[17]

Zhang, N.; Xing, Z. P.; Li, Z. Z.; Zhou, W. Sulfur vacancy engineering of metal sulfide photocatalysts for solar energy conversion. Chem. Catal. 2023, 3, 100375.

[18]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[19]

Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.

[20]

Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063.

[21]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme S v -ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[22]

Chen, S. S.; Vequizo, J. J. M.; Pan, Z. H.; Hisatomi, T.; Nakabayashi, M.; Lin, L. H.; Wang, Z.; Kato, K.; Yamakata, A.; Shibata, N. et al. Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting. J. Am. Chem. Soc. 2021, 143, 10633–10641.

[23]

Zhang, M.; Lu, M.; Lang, Z. L.; Liu, J.; Liu, M.; Chang, J. N.; Li, L. Y.; Shang, L. J.; Wang, M.; Li, S. L. et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 6500–6506.

[24]

Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

[25]

Zhang, K.; Kim, J. K.; Park, B.; Qia, S. F.; Ji, B. J.; Sheng, X. W.; Zeng, H. B.; Shin, H.; Oh, S. H.; Lee, C. L. et al. Defect-induced epitaxial growth for efficient solar hydrogen production. Nano Lett. 2017, 17, 6676–6683.

[26]

Guo, Y.; Shi, W. X.; Zhu, Y. F. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. Ecomat 2019, 1, e12007.

[27]

Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.

[28]

Wang, X. X.; Xie, J. Z.; Li, S. Y.; Yuan, Z.; Sun, Y. F.; Gao, X. Y.; Tang, Z.; Zhang, H. Y.; Li, J. X.; Wang, S. Y. et al. Enhancing interfacial electric field in WO3-C3N4 through Fermi level modulation for electrocatalytic nitrogen reduction. Appl. Catal. B: Environ. 2023, 339, 123126.

[29]

Zhu, B. C.; Tan, H. Y.; Fan, J. J.; Cheng, B.; Yu, J. G.; Ho, W. K. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. J. Materiomics 2021, 7, 988–997.

[30]

Sun, S. C.; Gao, R. J.; Liu, X. L.; Pan, L.; Shi, C. X.; Jiang, Z.; Zhang, X. W.; Zou, J. J. Engineering interfacial band bending over bismuth vanadate/carbon nitride by work function regulation for efficient solar-driven water splitting. Sci. Bull. 2022, 67, 389–397.

[31]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[32]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[33]

Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M. The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: Synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg. Chem. 2008, 47, 11892–11901.

[34]

Guo, J. L.; Liang, Y. H.; Liu, L.; Hu, J. S.; Wang, H.; An, W. J.; Cui, W. Q. Core–shell structure of sulphur vacancies-CdS@CuS: Enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer. J. Colloid Interface Sci. 2021, 600, 138–149.

[35]

Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2020, 14, 1095–1102.

[36]

Shen, R. C.; Ding, Y. N.; Li, S. B.; Zhang, P.; Xiang, Q. J.; Ng, Y. H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36.

[37]

Chang, K.; Li, M.; Wang, T.; Ouyang, S. X.; Li, P.; Liu, L. Q.; Ye, J. H. Drastic layer-number-dependent activity enhancement in photocatalytic H2 evolution over nMoS2/CdS ( n ≥ 1) under visible light. Adv. Energy Mater. 2015, 5, 1402279.

[38]

Li, Q. H.; Lu, W.; Li, Z. P.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem. Eng. J. 2020, 380, 122544.

[39]

Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

[40]

Liu, Y. N.; Ma, X. H.; Jin, Z. L. Engineering a NiAl-LDH/CoS x S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 609, 686–697.

[41]

Jiang, R. Q.; Mao, L.; Zhao, Y. L.; Zhang, J. Y.; Chubenko, E. B.; Bondarenko, V.; Sui, Y. W.; Gu, X. Q.; Cai, X. Y. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci. China Mater. 2022, 66, 139–149

[42]

Wei, L.; Chen, Y. J.; Lin, Y. P.; Wu, H. S.; Yuan, R. S.; Li, Z. H. MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B: Environ. 2014, 144, 521–527.

[43]

Xing, M. Y.; Qiu, B. C.; Du, M. M.; Zhu, Q. H.; Wang, L. Z.; Zhang, J. L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1702624.

[44]

Xiong, J. H.; Liu, Y. H.; Wang, D. K.; Liang, S. J.; Wu, W. M.; Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A 2015, 3, 12631–12635.

[45]

Zhu, P.; Chen, Y.; Zhou, Y.; Yang, Z. X.; Wu, D.; Xiong, X.; Ouyang, F. P. A metallic MoS2 nanosheet array on graphene-protected Ni foam as a highly efficient electrocatalytic hydrogen evolution cathode. J. Mater. Chem. A 2018, 6, 16458–16464.

[46]

Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447

[47]

Wang, H. Q.; Xu, J. H.; Zhang, Q. B.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.

[48]

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

[49]

Jiang, D. C.; Zhu, L.; Irfan, R. M.; Zhang, L.; Du, P. W. Integrating noble-metal-free NiS cocatalyst with a semiconductor heterojunction composite for efficient photocatalytic H2 production in water under visible light. Chin. J. Catal. 2017, 38, 2102–2109.

[50]

Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

[51]

Cui, X. M.; Ruan, Q. F.; Zhuo, X. L.; Xia, X. Y.; Hu, J. T.; Fu, R. F.; Li, Y.; Wang, J. F.; Xu, H. X. Photothermal nanomaterials: A powerful light-to-heat converter. Chem. Rev. 2023, 123, 6891–6952.

[52]

Du, C.; Yang, G. W. Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation. Nano Energy 2020, 76, 105031.

[53]

Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

[54]

Xiang, X. M.; Chou, L. J.; Li, X. H. Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability. Chin. J. Catal. 2018, 39, 407–412.

[55]

Tao, J. N.; Wang, M. Y.; Zhang, X. Z.; Lu, L.; Tang, H.; Liu, Q. Q.; Lei, S. Y.; Qiao, G. J.; Liu, G. W. A novel CoP@AAH cocatalyst leads to excellent stability and enhanced photocatalytic H2 evolution of CdS by structurally separating the photogenerated carriers. Appl. Catal. B: Environ. 2023, 320, 122004.

[56]

Xue, X. D.; Dong, W. J.; Luan, Q. J.; Gao, H. Y.; Wang, G. Novel interfacial lateral electron migration pathway formed by constructing metallized CoP2/CdS interface for excellent photocatalytic hydrogen production. Appl. Catal. B: Environ. 2023, 334, 122860.

[57]

Meng, L. H.; Zhao, C.; Wang, T. Y.; Chu, H. Y.; Wang, C. C. Efficient ciprofloxacin removal over Z-scheme ZIF-67/V-BiOIO3 heterojunctions: Insight into synergistic effect between adsorption and photocatalysis. Sep. Purif. Technol. 2023, 313, 123511.

[58]

Zhao, F.; Law, Y. L.; Zhang, N.; Wang, X.; Wu, W. L.; Luo, Z. T.; Wang, Y. H. Constructing spatially separated cage-like Z-scheme heterojunction photocatalyst for enhancing photocatalytic H2 evolution. Small 2023, 19, 2208266.

[59]

She, X. J.; Xu, H.; Yu, Y. H.; Li, L.; Zhu, X. W.; Mo, Z.; Song, Y. H.; Wu, J. J.; Yuan, S. Q.; Li, H. M. Accelerating photogenerated charge kinetics via the synergetic utilization of 2D semiconducting structural advantages and noble-metal-free schottky junction effect. Small 2019, 15, 1804613.

[60]

Qi, K. Z.; Lv, W. X.; Khan, I.; Liu, S. Y. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. Chin. J. Catal. 2020, 41, 114–121.

[61]

Du, C.; Zhang, Q.; Lin, Z. Y.; Yan, B.; Xia, C. X.; Yang, G. W. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 248, 193–201.

[62]

Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

[63]

Yi, W. J.; Du, X.; Zhang, M.; Yi, S. S.; Xia, R. H.; Li, C. Q.; Liu, Y.; Liu, Z. Y.; Zhang, W. L.; Yue, X. Z. Rational distribution of Ru nanodots on 2D Ti3− x C2T y /g-C3N4 heterostructures for boosted photocatalytic H2 evolution. Nano Res. 2023, 16, 6652–6660.

[64]

Hao, X. Q.; Wang, Y. C.; Zhou, J.; Cui, Z. W.; Wang, Y.; Zou, Z. G. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl. Catal. B: Environ. 2018, 221, 302–311.

[65]

Li, X.; Yu, J. G.; Low, J. X.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534.

[66]

Li, Z. H.; Dong, T. T.; Zhang, Y. F.; Wu, L.; Li, J. Q.; Wang, X. X.; Fu, X. Z. Studies on In(OH) y S z solid solutions: Syntheses, characterizations, electronic structure, and visible-light-driven photocatalytic activities. J. Phys. Chem. C 2007, 111, 4727–4733.

[67]

Wei, X. Q.; Song, S. J.; Cai, W. W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X. S.; Wu, N. N.; Luo, Z.; Wang, H. J.; et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023, 9, 181–197.

[68]

Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

[69]

Zhang, Z.; Yates, Jr. J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

[70]

Zhu, J. F.; Bi, Q. Y.; Tao, Y. H.; Guo, W. Y.; Fan, J. C.; Min, Y. L.; Li, G. S. Mo-modified ZnIn2S4@NiTiO3 S-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2213131.

[71]

Lin, Y.; Zhang, Q.; Li, Y. H.; Liu, Y. P.; Xu, K. J.; Huang, J. N.; Zhou, X. S.; Peng, F. The evolution from a typical type-I CdS/ZnS to type-II and Z-scheme hybrid structure for efficient and stable hydrogen production under visible light. ACS Sustain. Chem. Eng. 2020, 8, 4537–4546.

[72]

Zhang, X. W.; Li, Z.; Zeng, B.; Li, C.; Han, H. X. EPR study of charge separation associated states and reversibility of surface bound superoxide radicals in SrTiO3 photocatalyst. J. Energy Chem. 2022, 70, 388–393.

[73]

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2T X MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

[74]

Deng, K.; Mao, Q. Q.; Wang, W. X.; Wang, P.; Wang, Z. Q.; Xu, Y.; Li, X. M.; Wang, H. J.; Wang, L. Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Appl. Catal. B: Environ. 2022, 310, 121338.

Nano Research
Pages 6281-6293
Cite this article:
Jiang C, Qiu Y, Xin X, et al. MOF-templated tubular Ni1−xCoxS2-CdS heterojunction with intensified direct Z-scheme charge transmission for highly promoted visible-light photocatalysis. Nano Research, 2024, 17(7): 6281-6293. https://doi.org/10.1007/s12274-024-6636-z
Topics:

702

Views

3

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 18 January 2024
Revised: 17 March 2024
Accepted: 17 March 2024
Published: 19 April 2024
© Tsinghua University Press 2024
Return