Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photo-excited holes usually migrate to the surface of the catalyst and rapidly recombine with electrons, reducing the photocatalytic reduction efficiency of uranium(VI) (U(VI)) in radioactive wastewater. Consequently, we employed a straightforward synthesis technique to meticulously shape and manipulate the morphology of CdS to precisely construct CdS-Ni dandelion-like composites with different aspect ratios. Briefly, the introduction of crystal facet homojunction with Ohmic contacts in this unique morphology siqnificantly improves the photocatalytic efficiency. Temperature-dependent photoluminescence spectroscopy (TD-PL) verifies that the composite material positively effects on the dissociation of excitons. Within 30 min, CdS(002)/(102)/Ni-4 removed 98% of the uranium content in solution and showed a rather high apparent rate constant (0.114 min−1), which was 4.8 times higher than that of CdS nanospheres (NSs) (0.024 min−1) and 3.7 times higher than that of CdS nanorods (NRs) (0.031 min−1). This is much higher the most reported photocatalysts for U(VI) reduction. Even after 5 consecutive cycles, the photocatalytic efficiency only decreased by 7%. This offers a fresh perspective on constructing a new perspective for building a green, efficient, and multi mechanism collaborative catalytic system to remediate environmental pollution.
Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Chai, Z. F.; Shi, W. Q. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666–5674.
Li, Z. F.; Zhang, Z. B.; Zhu, X.; Meng, C.; Dong, Z. M.; Xiao, S. T.; Wang, Y. C.; Wang, Y. Q.; Cao, X. H.; Liu, Y. H. Exciton dissociation and transfer behavior and surface reaction mechanism in donor–acceptor organic semiconductor photocatalytic separation of uranium. Appl. Catal. B: Environ. 2023, 332, 122751.
Ma, M. Y.; Ye, Z. X.; Zhang, J.; Wang, Y. B.; Ning, S. Y.; Yin, X. B.; Fujita, T.; Chen, Y. L.; Wu, H. Y.; Wang, X. P. Synthesis and fabrication of segregative and durable MnO2@chitosan composite aerogel beads for uranium(VI) removal from wastewater. Water Res. 2023, 247, 120819.
Wang, B.; He, S.; Feng, W. H.; Zhang, L. L.; Huang, X. Y.; Wang, K. Q.; Zhang, S. Y.; Liu, P. Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B: Environ. 2018, 236, 233–239.
Peng, Z. Y.; Su, Y. L.; Siaj, M. Encapsulation of tin oxide layers on gold nanoparticles decorated one-dimensional CdS nanoarrays for pure Z-scheme photoanodes towards solar hydrogen evolution. Appl. Catal. B: Environ. 2023, 330, 122614.
Zhang, X. L.; Wu, F.; Li, G. C.; Wang, L.; Huang, J. F.; Meng, A. L.; Li, Z. J. Modulating electronic structure and sulfur p-band center by anchoring amorphous Ni@NiS x on crystalline CdS for expediting photocatalytic H2 evolution. Appl. Catal. B: Environ. 2024, 342, 123398.
Movlarooy, T. Study of quantum confinement effects in ZnO nanostructures. Mater. Res. Express 2018, 5, 035032.
Kim, D.; Lee, Y. K.; Lee, D.; Kim, W. D.; Bae, W. K.; Lee, D. C. Colloidal dual-diameter and core-position-controlled core/shell cadmium chalcogenide nanorods. ACS Nano 2017, 11, 12461–12472.
Wu, K. F.; Rodríguez-Córdoba, W.; Lian, T. Q. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: Effect of nonuniform rod diameters. J. Phys. Chem. B 2014, 118, 14062–14069.
Dong, Z. M.; Hu, S. X.; Li, Z. F.; Xu, J. H.; Gao, D. L.; Yu, F. T.; Li, X. Y.; Cao, X. H.; Wang, Y. Q.; Zhang, Z. B. et al. Biomimetic photocatalytic system designed by spatially separated cocatalysts on Z-scheme heterojunction with identified charge-transfer processes for boosting removal of U(VI). Small 2023, 19, 2300003.
Jin, J.; Yu, J. G.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 2013, 1, 10927–10934.
Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.
Wang, R.; Shen, J.; Sun, K. H.; Tang, H.; Liu, Q. Q. Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction. Appl. Surf. Sci. 2019, 493, 1142–1149.
Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.
Zhang, A. Y.; Wang, W. Y.; Chen, J. J.; Liu, C.; Li, Q. X.; Zhang, X.; Li, W. W.; Si, Y.; Yu, H. Q. Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ. Sci. 2018, 11, 1444–1448.
Hu, X. L.; Lu, S. C.; Tian, J.; Wei, N.; Song, X. J.; Wang, X. Z.; Cui, H. Z. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl. Catal. B: Environ. 2019, 241, 329–337.
De Corrado, J. M.; Fernando, J. F. S.; Shortell, M. P.; Poad, B. L. J.; Blanksby, S. J.; Waclawik, E. R. ZnO Colloid crystal facet-type determines both Au photodeposition and photocatalytic activity. ACS Appl. Nano Mater. 2019, 2, 7856–7869.
Zhang, J. J.; Zhang, Q. N.; Yue, Y. W.; Zhou, Y. G.; Shen, J. N.; Zhang, Z. Z.; Wang, X. X. The effect of excitation wavelength on the photodeposition of Pt on polyhedron BiVO4 with exposing {010} and {110} facets for photocatalytic performance. Catal. Commun. 2019, 123, 100–104.
Ma, J. Q.; Guo, X. H.; Zhang, Y. Y.; Ge, H. G. Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method. Chem. Eng. J. 2014, 258, 247–253.
Peng, S. N.; Jiang, Y. H.; Wang, Z. M.; Luo, X. D.; Lu, J. L.; Han, L.; Ding, Y. H. Introducing a porous container and a defect-rich cocatalyst coating over CdS nanoparticles for promotion of photocatalytic hydrogen evolution. Catal. Lett. 2020, 150, 3533–3541.
Cheng, C. C.; Zhang, J. W.; Zeng, R. Y.; Xing, F. S.; Huang, C. J. Schottky barrier tuning via surface plasmon and vacancies for enhanced photocatalytic H2 evolution in seawater. Appl. Catal. B: Environ. 2022, 310, 121321.
Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Electron-extracting system with enhanced photocatalytic hydrogen production performance: Synergistic utilization of Z-scheme and Ohmic heterojunctions. Chem. Eng. J. 2022, 429, 132476.
Wang, Z. Q.; Qi, Z. L.; Fan, X. J.; Leung, D. Y. C.; Long, J. L.; Zhang, Z. Z.; Miao, T. F.; Meng, S. G.; Chen, S. F.; Fu, X. L. Intimately contacted Ni2P on CdS nanorods for highly efficient photocatalytic H2 evolution: New phosphidation route and the interfacial separation mechanism of charge carriers. Appl. Catal. B: Environ. 2021, 281, 119443.
Fang, X.; Chen, L.; Cheng, H. R.; Bian, X. Q.; Sun, W. H.; Ding, K. N.; Xia, X. H.; Chen, X.; Zhu, J. F.; Zheng, Y. H. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 8782–8792.
Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Effective separation and transfer of carriers into the redox sites on Ta3N5/Bi photocatalyst for promoting conversion of CO2 into CH4. Appl. Catal. B: Environ. 2018, 224, 10–16.
Zhang, Z. B.; Li, Z. F.; Dong, Z. M.; Yu, F. T.; Wang, Y. C.; Wang, Y. Q.; Cao, X. H.; Liu, Y. H.; Liu, Y. H. Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction. Chin. Chem. Lett. 2022, 33, 3577–3580.
Pan, J. Q.; Li, H. L.; Li, S.; Ou, W.; Liu, Y. Y.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The enhanced photocatalytic hydrogen production of nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets. Renew. Energy 2020, 156, 469–477.
Qiao, S. S.; Feng, C.; Guo, Y.; Chen, T. X.; Akram, N.; Zhang, Y.; Wang, W.; Yue, F.; Wang, J. D. CdS nanoparticles modified Ni@NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system. Chem. Eng. J. 2020, 395, 125068.
Li, Y. X.; Hu, Y. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 2009, 113, 9352–9358.
Yang, H.; Jin, Z. L.; Fan, K.; Liu, D. D.; Lu, G. X. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity. Superlattices Microstruct. 2017, 111, 687–695.
Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater. 2017, 29, 1703258.
Zhong, J.; Shen, Y. L.; Zhu, P.; Yao, S.; An, C. H. Size-effect on Ni electrocatalyst: The case of electrochemical benzyl alcohol oxidation. Nano Res. 2023, 16, 202–208.
Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.
Deng, P. S.; Wang, P.; Wang, X. F.; Chen, F.; Yu, H. G. Oxygen-contained amorphous MoS x cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation. Nano Res. 2023, 16, 8977–8986.
She, H. D.; Sun, Y. D.; Li, S. P.; Huang, J. W.; Wang, L.; Zhu, G. Q.; Wang, Q. Z. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance. Appl. Catal. B: Environ. 2019, 245, 439–447.
Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.
Zheng, S. Y.; Peng, S. N.; Wang, Z. M.; Huang, J. T.; Luo, X. D.; Han, L.; Li, X. B. Schottky-structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution. Ceram. Int. 2021, 47, 28304–28311.
Zhang, W. J.; Deng, Z. Z.; Deng, J. Y.; Au, C. T.; Liao, Y. F.; Yang, H.; Liu, Q. Q. Regulating the exciton binding energy of covalent triazine frameworks for enhancing photocatalysis. J. Mater. Chem. A 2022, 10, 22419–22427.
Simon, T.; Carlson, M. T.; Stolarczyk, J. K.; Feldmann, J. Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods. ACS Energy Lett. 2016, 1, 1137–1142.
Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.
Zhang, H. Z.; Dong, Y. M.; Zhao, S.; Wang, G. L.; Jiang, P. P.; Zhong, J.; Zhu, Y. F. Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 261, 118233.
Kim, Y. K.; Lee, S.; Ryu, J.; Park, H. Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl. Catal. B: Environ. 2015, 163, 584–590.
Cheng, L. L.; Zhang, S. F.; Wang, Y. J.; Ding, G. J.; Jiao, Z. Ternary P25-graphene-Fe3O4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes. Mater. Res. Bull. 2016, 73, 77–83.
Jin, S.; Shao, W.; Luo, X.; Wang, H.; Sun, X. S.; He, X.; Zhang, X. D.; Xie, Y. Spatial band separation in a surface doped heterolayered structure for realizing efficient singlet oxygen generation. Adv. Mater. 2022, 34, 2206516.
Liu, C.; Hsu, P. C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H. T.; Liu, W.; Zhang, J. S.; Chu, S.; Cui, Y. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2017, 2, 17007.
Pointurier, F.; Marie, O. Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J. Raman Spectrosc. 2013, 44, 1753–1759.
Li, N.; Han, L.; Zhang, H. N.; Huang, J. T.; Luo, X. D.; Li, X. B.; Wang, Y. H.; Qian, W. Q.; Yang, Y. Polydopamine nanolayer assisted internal photo-deposition of CdS nanocrystals for stable cosensitized photoanode. Nano Res. 2022, 15, 8836–8845.
Chen, H. H.; Leng, W. H.; Xu, Y. M. Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J. Phys. Chem. C 2014, 118, 9982–9989.
Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 2020, 16, 2002140.
Guo, H. W.; Wan, S. P.; Wang, Y. N.; Ma, W. H.; Zhong, Q.; Ding, J. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chem. Eng. J. 2021, 412, 128646.
Gao, J. F.; Zhang, F. D.; Xue, H. Q.; Zhang, L. H.; Peng, Y.; Li, X. L.; Gao, Y. Q.; Li, N.; Lei, G. In-situ synthesis of novel ternary CdS/PdAg/g-C3N4 hybrid photocatalyst with significantly enhanced hydrogen production activity and catalytic mechanism exploration. Appl. Catal. B: Environ. 2021, 281, 119509.
Wang, J. F.; Wang, P. F.; Hou, J.; Qian, J.; Wang, C.; Ao, Y. H. In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal. Sci. Technol. 2018, 8, 5406–5415.
Qi, Z.; Chen, J. B.; Li, Q.; Wang, N.; Carabineiro, S. A. C.; Lv, K. L. Increasing the photocatalytic hydrogen generation activity of CdS nanorods by introducing interfacial and polarization electric fields. Small 2023, 19, 2303318.