AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Observation of robust anisotropy in WS2/BP heterostructures

Xinran Li1,2Xing Xie1,2Biao Wu1,2Junying Chen1,2Shaofei Li1Jun He1Zongwen Liu3,4Jian-Tao Wang5,6,7Yanping Liu1,2,8 ( )
Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha 410083, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Shenzhen Research Institute of Central South University, Shenzhen 518000, China
Show Author Information

Graphical Abstract

The study investigates robust anisotropy in WS2/BP heterostructures, achieved through heterojunction interface engineering with black phosphorus (BP) to disrupt the C3 rotational symmetry of monolayer WS2. These findings provide valuable insights into designing anisotropic optoelectronic devices adaptable to various magnetic fields and temperatures, thus advancing material-driven device engineering.

Abstract

Two-dimensional (2D) anisotropic materials have garnered significant attention in the realm of anisotropic optoelectronic devices due to their remarkable electrical, optical, thermal, and mechanical properties. While extensive research has delved into the optical and electrical characteristics of these materials, there remains a need for further exploration to identify novel materials and structures capable of fulfilling device requirements under various conditions. Here, we employ heterojunction interface engineering with black phosphorus (BP) to disrupt the C3 rotational symmetry of monolayer WS2. The resulting WS2/BP heterostructure exhibits pronounced anisotropy in exciton emissions, with a measured anisotropic ratio of 1.84 for neutral excitons. Through a comprehensive analysis of magnetic-field-dependent and temperature-evolution photoluminescence spectra, we discern varying trends in the polarization ratio, notably observing a substantial anisotropy ratio of 1.94 at a temperature of 1.6 Kand a magnetic field of 9 T. This dynamic behavior is attributed to the susceptibility of the WS2/BP heterostructure interface strain to fluctuations in magnetic fields and temperatures. These findings provide valuable insights into the design of anisotropic optoelectronic devices capable of adaptation to a range of magnetic fields and temperatures, thereby advancing the frontier of material-driven device engineering.

Electronic Supplementary Material

Download File(s)
6638_ESM.pdf (1,011.7 KB)

References

[1]

Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.

[2]

Zhan, Y.; Wang, Y.; Cheng, Q. F.; Li, C.; Li, K. X.; Li, H. Z.; Peng, J. S.; Lu, B.; Wang, Y.; Song, Y. L. et al. A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector. Angew. Chem. 2019, 131, 16608–16614.

[3]

Su, B. W.; Yao, B. W.; Zhang, X. L.; Huang, K. X.; Li, D. K.; Guo, H. W.; Li, X. K.; Chen, X. D.; Liu, Z. B.; Tian, J. G. A gate-tunable symmetric bipolar junction transistor fabricated via femtosecond laser processing. Nanoscale Adv. 2020, 2, 1733–1740.

[4]

Mao, N. N.; Zhang, S. S.; Wu, J. X.; Tian, H. H.; Wu, J. X.; Xu, H.; Peng, H. L.; Tong, L. M.; Zhang, J. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 2018, 11, 3154–3163.

[5]

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

[6]

Buscema, M.; Groenendijk, D. J.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.

[7]

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

[8]

Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

[9]

Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

[10]

Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.

[11]

Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

[12]

Liang, J.; Yang, D. Y.; Wu, J. D.; Dadap, J. I.; Watanabe, K.; Taniguchi, T.; Ye, Z. L. Optically probing the asymmetric interlayer coupling in rhombohedral-stacked MoS2 bilayer. Phys. Rev. X 2022, 12, 041005.

[13]

Tang, Y. X.; Hao, H.; Kang, Y.; Liu, Q. R.; Sui, Y. Z.; Wei, K.; Cheng, X. A.; Jiang, T. Distinctive interfacial charge behavior and versatile photoresponse performance in isotropic/anisotropic WS2/ReS2 heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 53475–53483.

[14]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Anisotropic optical characteristics of WS2/ReS2 heterostructures with broken rotational symmetry. Appl. Phys. Lett. 2023, 123, 222101.

[15]

Ruiz-Tijerina, D. A.; Soltero, I.; Mireles, F. Theory of moiré localized excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2020, 102, 195403.

[16]

Patra, S.; Das, M.; Mahadevan, P. The role of stacking on the electronic structure of MoSe2 at small twist angles. J. Phys. Mater. 2024, 7, 014001.

[17]

Delhomme, A.; Vaclavkova, D.; Slobodeniuk, A.; Orlita, M.; Potemski, M.; Basko, D. M.; Watanabe, K.; Taniguchi, T.; Mauro, D.; Barreteau, C. Flipping exciton angular momentum with chiral phonons in MoSe2/WSe2 heterobilayers. 2D Mater. 2020, 7, 041002.

[18]

Hu, T.; Zhao, G. D.; Gao, H.; Wu, Y. B.; Hong, J. S.; Stroppa, A.; Ren, W. Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect. Phys. Rev. B 2020, 101, 125401.

[19]

Goode, S. W.; Wainwright, J. Characterization of locally rotationally symmetric space-times. Gen. Relat. Gravit. 1986, 18, 315–331.

[20]

Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

[21]

Zheng, X. M.; Wei, Y. H.; Zhang, X. Z.; Wei, Z. H.; Luo, W.; Guo, X.; Liu, J. X.; Peng, G.; Cai, W. W.; Huang, H. et al. Symmetry engineering induced in-plane polarization in MoS2 through Van der Waals interlayer coupling. Adv Funct. Mater. 2022, 32, 2202658.

[22]

Wang, W. J.; Sun, Y. R.; Dai, P.; Gao, H. L.; Du, C. H.; Li, K. L. Optical anisotropy and polarization selectivity in MoS2/Ta2NiSe5 van der Waals heterostructures. Appl. Phys. Lett. 2023, 122, 233101.

[23]

Li, Z. Y.; Huang, J. W.; Zhou, L.; Xu, Z. A.; Qin, F.; Chen, P.; Sun, X. J.; Liu, G.; Sui, C. Q.; Qiu, C. Y. et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nat. Commun. 2023, 14, 5568.

[24]

Li, D. L.; Gong, Y. N.; Chen, Y. X.; Lin, J. M.; Khan, Q.; Zhang, Y. P.; Li, Y.; Zhang, H.; Xie, H. P. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 2020, 12, 36.

[25]

Duan, S. Y.; Qin, F.; Chen, P.; Yang, X. P.; Qiu, C. Y.; Huang, J. W.; Liu, G.; Li, Z. Y.; Bi, X. Y.; Meng, F. H. et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nat. Nanotechnol. 2023, 18, 867–874.

[26]

Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

[27]

Absor, M. A. U.; Kotaka, H.; Ishii, F.; Saito, M. Strain-controlled spin splitting in the conduction band of monolayer WS2. Phys. Rev. B 2016, 94, 115131.

[28]

Mlack, J. T.; Das, P. M.; Danda, G.; Chou, Y. C.; Naylor, C. H.; Lin, Z.; López, N. P.; Zhang, T. Y.; Terrones, M.; Johnson, A. T. C. et al. Transfer of monolayer TMD WS2 and Raman study of substrate effects. Sci. Rep. 2017, 7, 43037.

[29]

Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S. Raman spectroscopy in black phosphorus. J. Raman Spectrosc. 2018, 49, 76–90.

[30]

Rigosi, A. F.; Hill, H. M.; Li, Y. L.; Chernikov, A.; Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 2015, 15, 5033–5038.

[31]

Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

[32]

Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

[33]

Shibata, H. Negative thermal quenching curves in photoluminescence of solids. Jpn. J. Appl. Phys. 1998, 37, 550.

[34]

Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, C. T.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Localization-enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light: Sci. Appl. 2023, 12, 117.

[35]

Ho, C. H.; Liu, Z. Z. Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy 2019, 56, 641–650.

[36]

He, H. R.; Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; Liu, Z. W.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures. Nano Res. 2024, 17, 3245–3252.

[37]

Thingna, J.; Manzano, D.; Cao, J. S. Magnetic field induced symmetry breaking in nonequilibrium quantum networks. New J. Phys. 2020, 22, 083026.

[38]

Huang, B.; Cenker, J.; Zhang, X. O.; Ray, E. L.; Song, T. C.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Xiao, D.; Xu, X. D. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 2020, 15, 212–216.

[39]

Pershan, P. S.; Van der Ziel, J. P.; Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 1966, 143, 574–583.

[40]

Hogan, C. L. The ferromagnetic Faraday effect at microwave frequencies and its applications. Rev. Mod. Phys. 1953, 25, 253–262.

[41]

Sharipov, M. Z.; Fayziyeva, Z. X. Faraday effect. Orient. J. Phys. Math. 2022, 2, 1–6.

[42]

Shaw, J. A. Degree of linear polarization in spectral radiances from water-viewing infrared radiometers. Appl. Opt. 1999, 38, 3157–3165.

[43]

Al-Qasimi, A.; Korotkova, O.; James, D.; Wolf, E. Definitions of the degree of polarization of a light beam. Opt. Lett. 2007, 32, 1015–1016.

[44]

Kosowsky, A.; Kahniashvili, T.; Lavrelashvili, G.; Ratra, B. Faraday rotation of the Cosmic Microwave Background polarization by a stochastic magnetic field. Phys. Rev. D 2005, 71, 043006.

[45]

Tutuc, E.; De Poortere, E. P.; Papadakis, S. J.; Shayegan, M. In-plane magnetic field-induced spin polarization and transition to insulating behavior in two-dimensional hole systems. Phys. Rev. Lett. 2001, 86, 2858–2861.

[46]

Brock, C. P.; Dunitz, J. D. Temperature dependence of thermal motion in crystalline anthracene. Acta Cryst. 1990, B46, 795–806.

[47]

Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 2022, 15, 9588–9594.

[48]

Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Yu, G. Q.; Duan, J. A.; Liu, Y. P. Enhanced valley polarization in WSe2/YIG heterostructures via interfacial magnetic exchange effect. Nano Res. 2023, 16, 10580–10586.

[49]

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

[50]

Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.

[51]

Liu, E. F.; Barré, E.; van Baren, J.; Wilson, M.; Taniguchi, T.; Watanabe, K.; Cui, Y. T.; Gabor, N. M.; Heinz, T. F.; Chang, Y. C. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 2021, 594, 46–50.

[52]

Akamatsu, T.; Ideue, T.; Zhou, L.; Dong, Y.; Kitamura, S.; Yoshii, M.; Yang, D. Y.; Onga, M.; Nakagawa, Y.; Watanabe, K. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 2021, 372, 68–72.

[53]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[54]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[55]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

Nano Research
Pages 6749-6756
Cite this article:
Li X, Xie X, Wu B, et al. Observation of robust anisotropy in WS2/BP heterostructures. Nano Research, 2024, 17(7): 6749-6756. https://doi.org/10.1007/s12274-024-6638-x
Topics:

520

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 12 February 2024
Revised: 04 March 2024
Accepted: 17 March 2024
Published: 02 May 2024
© Tsinghua University Press 2024
Return