AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Entropy-modulated and interlayer-doped transition metal layered oxides enable high-energy-density sodium-ion capacitors

Tiansheng Wang1,§Yadong Li1,§Zhengyuan Chen1Qingshan Liu1Jian Lang1Langyuan Wu2Wendi Dong2Zhengyu Ju3Hongsen Li1( )Xiaogang Zhang2Guihua Yu3( )
College of Physics, Qingdao University, Qingdao 266071, China
Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin 78712, USA

§ Tiansheng Wang and Yadong Li contributed equally to this work.

Show Author Information

Graphical Abstract

We employed an entropy-modulated and interlayer-pillaring strategy to construct an intercalated cathode that exhibits exceptional dynamics and long-cycle stability. This electrode was then paired with hierarchical porous carbon to fabricate “rocking chair” sodium-ion capacitors (SICs) with excellent performance.

Abstract

In recent years, sodium-ion capacitors have attracted attention due to their cost-effectiveness, high power density and similar manufacturing process to lithium-ion capacitors. However, the utilization of oxide electrodes in traditional sodium-ion capacitors restricts their further advancement due to the inherent low operating voltage and electrolyte consumption based on their energy storage mechanism. To address these challenges, we incorporated Zn, Cu, Ti, and other elements into Na0.67Ni0.33Mn0.67O2 to synthesize P2-type Na0.7Ni0.28Mn0.6Zn0.05Cu0.02Ti0.05O2 with a modulated entropy and pillaring Zn. Through the synergistic interplay between the interlayer pillar and the entropy modulation within the layers, the material exhibits exceptional toughness, effectively shielding it from detrimental phase transitions at elevated voltage regimes. As a result, the material showcases outstanding kinetic properties and long-term cycling stability across the voltage range. By integrating these materials with hierarchical porous carbon nanospheres to form a "rocking chair" sodium-ion capacitor, the hybrid full device delivers a high energy density (171 Wh·kg−1) and high power density (5245 W·kg−1), as well as outstanding cycling stability (77% capacity retention after 3000 cycles). This work provides an effective material development route to realize simultaneously high energy and power for next-generation sodium-ion capacitors.

Electronic Supplementary Material

Download File(s)
6640_ESM.pdf (920.1 KB)

References

[1]

Liu, T. C.; Liu, J. J.; Li, L. X.; Yu, L.; Diao, J. C.; Zhou, T.; Li, S. N.; Dai, A.; Zhao, W. G.; Xu, S. Y. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 2022, 606, 305–312.

[2]

Li, Y. D.; Li, Y. H.; Liu, Q. S.; Liu, Y. S.; Wang, T. S.; Cui, M. J.; Ding, Y.; Li, H. S.; Yu, G. H. Revealing the dominance of the dissolution-deposition mechanism in aqueous Zn-MnO2 batteries. Angew. Chem., Int. Ed. 2024, 63, e202318444.

[3]

Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

[4]

Guo, S. H.; Li, Q.; Liu, P.; Chen, M. W.; Zhou, H. S. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat. Commun. 2017, 8, 135.

[5]

Wang, Y. S.; Feng, Z. M.; Cui, P. X.; Zhu, W.; Gong, Y.; Girard, M. A.; Lajoie, G.; Trottier, J.; Zhang, Q. H.; Gu, L. et al. Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat. Commun. 2021, 12, 13.

[6]

Wu, L. Y.; Dong, S. Y.; Pang, G.; Li, H. S.; Xu, C. Y.; Zhang, Y. D.; Dou, H.; Zhang, X. G. Rocking-chair Na-ion hybrid capacitor: A high energy/power system based on Na3V2O2(PO4)2F@PE DOT core–shell nanorods. J. Mater. Chem. A 2019, 7, 1030–1037.

[7]

Li, F.; Li, Y. D.; Zhao, L. Y.; Liu, J.; Zuo, F. K.; Gu, F. C.; Liu, H. J.; Liu, R. B.; Li, Y. H.; Zhan, J. Q. et al. Revealing an intercalation-conversion-heterogeneity hybrid lithium-ion storage mechanism in transition metal nitrides electrodes with jointly fast charging capability and high energy output. Adv. Sci. 2022, 9, 2203895.

[8]

Zuo, F. K.; Zhang, H.; Ding, Y.; Liu, Y. S.; Li, Y. H.; Liu, H. J.; Gu, F. C.; Li, Q.; Wang, Y. Q.; Zhu, Y. et al. Electrochemical interfacial catalysis in co-based battery electrodes involving spin-polarized electron transfer. Proc. Natl. Acad. Sci. USA 2023, 120, e2314362120.

[9]

Li, H. S.; Hu, Z. Q.; Zuo, F. K.; Li, Y. H.; Liu, M. H.; Liu, H. J.; Li, Y. D.; Li, Q.; Ding, Y.; Wang, Y. Q. et al. Real-time tracking of electron transfer at catalytically active interfaces in lithium-ion batteries. Proc. Natl. Acad. Sci. USA 2024, 121, e2320030121.

[10]

House, R. A.; Maitra, U.; Pérez-Osorio, M. A.; Lozano, J. G.; Jin, L. Y.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 2020, 577, 502–508.

[11]

Zhao, C. L.; Yao, Z. P.; Wang, Q. D.; Li, H. F.; Wang, J. L.; Liu, M.; Ganapathy, S.; Lu, Y. X.; Cabana, J.; Li, B. H. et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 2020, 142, 5742–5750.

[12]

Wang, H. Z.; Zhao, L. Y.; Zhang, H.; Liu, Y. S.; Yang, L.; Li, F.; Liu, W. H.; Dong, X. T.; Li, X. K.; Li, Z. H. et al. Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe2 cathode for aluminium-ion batteries by in situ magnetometry. Energy Environ. Sci. 2022, 15, 311–319.

[13]

Leong, K. W.; Pan, W. D.; Yi, X. P.; Luo, S. J.; Zhao, X. L.; Zhang, Y. G.; Wang, Y. F.; Mao, J. J.; Chen, Y.; Xuan, J. et al. Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage. Sci. Adv. 2023, 9, eadh1181.

[14]

Liu, J.; Huang, W. Y.; Liu, R. B.; Lang, J.; Li, Y. H.; Liu, T. C.; Amine, K.; Li, H. S. Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries. Adv. Funct. Mater. 2024, 2315437

[15]

Paidi, A. K.; Park, W. B.; Ramakrishnan, P.; Lee, S. H.; Lee, J. W.; Lee, K. S.; Ahn, H.; Liu, T. C.; Gim, J.; Avdeev, M. et al. Unravelling the nature of the intrinsic complex structure of binary-phase Na-layered oxides. Adv. Mater. 2022, 34, 2202137.

[16]

Onoh, E. U.; Elemike, E. E.; Ike, I. S.; Oguzie, E. E. Titanium materials as novel electrodes in sodium ion capacitors. J. Energy Storage 2023, 70, 108061.

[17]

Kubota, K.; Asari, T.; Komaba, S. Impact of Ti and Zn dual-substitution in P2 Type Na2/3Ni1/3Mn2/3O2 on Ni-Mn and Na-vacancy ordering and electrochemical properties. Adv. Mater. 2023, 35, 2300714.

[18]

Xu, E. Z.; Zhang, Y.; Wang, H.; Zhu, Z. F.; Quan, J. J.; Chang, Y. J.; Li, P. C.; Yu, D. B.; Jiang, Y. Ultrafast kinetics net electrode assembled via MoSe2 MXene heterojunction for high-performance sodium-ion batteries. Chem. Eng. J. 2020, 385, 123839.

[19]

Li, Y. J.; Wang, X. F.; Gao, Y. R.; Zhang, Q. H.; Tan, G. Q.; Kong, Q. Y.; Bak, S.; Lu, G.; Yang, X. Q.; Gu, L. et al. Native vacancy enhanced oxygen redox reversibility and structural robustness. Adv. Energy Mater. 2019, 9, 1803087.

[20]

Zhu, J. H.; Roscow, J.; Chandrasekaran, S.; Deng, L. B.; Zhang, P. X.; He, T. S.; Wang, K.; Huang, L. C. Biomass-derived carbons for sodium-ion batteries and sodium-ion capacitors. ChemSusChem 2020, 13, 1275–1295.

[21]

Han, D. L.; Zhang, J.; Weng, Z.; Kong, D. B.; Tao, Y.; Ding, F.; Ruan, D. B.; Yang, Q. H. Two-dimensional materials for lithium/sodium-ion capacitors. Mater. Today Energy 2019, 11, 30–45.

[22]

Voronina, N.; Yu, J. H.; Kim, H. J.; Yaqoob, N.; Guillon, O.; Kim, H.; Jung, M. G.; Jung, H. G.; Yazawa, K.; Yashiro, H. et al. Engineering transition metal layers for long lasting anionic redox in layered sodium manganese oxide. Adv. Funct. Mater. 2023, 33, 2210423.

[23]

Xiao, B. W.; Liu, X.; Chen, X.; Lee, G. H.; Song, M.; Yang, X.; Omenya, F.; Reed, D. M.; Sprenkle, V.; Ren, Y. et al. Uncommon behavior of Li doping suppresses oxygen redox in P2-type manganese-rich sodium cathodes. Adv. Mater. 2021, 33, 2107141.

[24]

Jin, T.; Wang, P. F.; Wang, Q. C.; Zhu, K. J.; Deng, T.; Zhang, J. X.; Zhang, W.; Yang, X. Q.; Jiao, L. F.; Wang, C. S. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 14511–14516.

[25]

Xu, Y. S.; Zhou, Y. N.; Zhang, Q. H.; Qi, M. Y.; Guo, S. J.; Luo, J. M.; Sun, Y. G.; Gu, L., Cao, A. M.; Wan, L. J. Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. Chem. Eng. J. 2021, 412, 128735.

[26]

Qi, X. D.; Wu, L. Y.; Li, Z. W.; Xiang, Y. X.; Liu, Y. N.; Huang, K. S.; Yuval, E.; Aurbach, D.; Zhang, X. G. Superstructure variation and improved cycling of anion redox active sodium manganese oxides due to doping by iron. Adv. Energy Mater. 2022, 12, 2202355.

[27]

Yang, L. T.; Del Amo, J. M. L.; Shadike, Z.; Bak, S. M.; Bonilla, F.; Galceran, M.; Nayak, P. K.; Buchheim, J. R.; Yang, X. Q.; Rojo, T. et al. Co- and Ni-free P2/O3 biphasic lithium stabilized layered oxide for sodium-ion batteries and its cycling behavior. Adv. Funct. Mater. 2020, 30, 2003364.

[28]

Yang, L. F.; Li, X.; Liu, J.; Xiong, S.; Ma, X. T.; Liu, P.; Bai, J. M.; Xu, W. Q.; Tang, Y. Z.; Hu, Y. Y. et al. Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J. Am. Chem. Soc. 2019, 141, 6680–6689.

[29]

Zhang, J. L.; Kim, J. B.; Zhang, J.; Lee, G. H.; Chen, M. Z.; Lau, V. W. H.; Zhang, K.; Lee, S.; Chen, C. L.; Jeon, T. Y. et al. Regulating pseudo-Jahn–Teller effect and superstructure in layered cathode materials for reversible alkali-ion intercalation. J. Am. Chem. Soc. 2022, 144, 7929–7938.

[30]

Wu, X. H.; Xu, G. L.; Zhong, G. M.; Gong, Z. L.; McDonald, M. J.; Zheng, S. Y.; Fu, R. Q.; Chen, Z. H.; Amine, K.; Yang, Y. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 22227–22237.

[31]

Shen, Q. Y.; Liu, Y. C.; Zhao, X. D.; Jin, J. T.; Wang, Y.; Li, S. W.; Li, P.; Qu, X. H.; Jiao, L. F. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv. Funct. Mater. 2021, 31, 2106923.

[32]

Huang, Y. Y.; Zhu, Y. C.; Nie, A. M.; Fu, H. Y.; Hu, Z. W.; Sun, X. P.; Haw, S. C.; Chen, J. M.; Chan, T. S.; Yu, S. J. et al. Enabling anionic redox stability of P2-Na5/6Li1/4Mn3/4O2 by Mg substitution. Adv. Mater. 2022, 34, 2105404.

[33]

Chen, X. L.; Zhao, Z. B.; Huang, K.; Tang, H. L. Al-substituted stable-layered P2-Na0.6Li0.15Al0.15Mn0.7O2 cathode for sodium ion batteries. Int. J. Energy Res. 2021, 45, 11338–11345.

[34]

Guo, Y. J.; Wang, P. F.; Niu, Y. B.; Zhang, X. D.; Li, Q. H.; Yu, X. Q.; Fan, M.; Chen, W. P.; Yu, Y.; Liu, X. F. et al. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat. Commun. 2021, 12, 5267.

[35]

Zhou, P. F.; Che, Z. N.; Liu, J.; Zhou, J. K.; Wu, X. Z.; Weng, J. Y.; Zhao, J. P.; Cao, H.; Zhou, J.; Cheng, F. Y. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 2023, 57, 618–627.

[36]

Ahn, J.; Giovine, R.; Wu, V. C.; Koirala, K. P.; Wang, C. M.; Clément, R. J.; Chen, G. Y. Ultrahigh-capacity rocksalt cathodes enabled by cycling-activated structural changes. Adv. Energy Mater. 2023, 13, 2300221.

[37]

Wu, J. P.; Zhuo, Z. Q.; Rong, X. H.; Dai, K. H.; Lebens-Higgins, Z.; Sallis, S.; Pan, F.; Piper, L. F. J.; Liu, G.; Chuang, Y. D. et al. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Sci. Adv. 2020, 6, eaaw3871.

[38]

Wang, H.; Peng, H. Y.; Xiao, Z. T.; Yu, R. H.; Liu, F.; Zhu, Z.; Zhou, L.; Wu, J. S. Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries. Energy Storage Mater. 2023, 58, 101–109.

[39]

Tan, Z. L.; Chen, X. X.; Li, Y. J.; Xi, X. M.; Hao, S. P.; Li, X. H.; Shen, X. J.; He, Z. J.; Zhao, W. G.; Yang, Y. Enabling superior cycling stability of LiNi0.9Co0.05Mn0.05O2 with controllable internal strain. Adv. Funct. Mater. 2023, 33, 2215123.

[40]

Zhao, C. L.; Ding, F. X.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264–269.

[41]

Yao, L.; Lin, J. S.; Chen, Y. Y.; Li, X. J.; Wang, D. R.; Yang, H. T.; Deng, L. B.; Zheng, Z. J. Supramolecular-mediated ball-in-ball porous carbon nanospheres for ultrafast energy storage. Infomat 2022, 4, e12278.

[42]

Zhu, Y.; Qian, Y. M.; Ju, Z. Y.; Ji, Y. J.; Yan, Y.; Liu, Y. Y.; Yu, G. H. Understanding charge storage in hydrated layered solids MOPO4 (M = V, Nb) with tunable interlayer chemistry. ACS Nano 2020, 14, 13824–13833.

[43]

Wang, C. C.; Liu, L. J.; Zhao, S.; Liu, Y. C.; Yang, Y. B.; Yu, H. J.; Lee, S.; Lee, G. H.; Kang, Y. M.; Liu, R. et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 2021, 12, 2256.

[44]

Kumaraguru, S.; Senthil, C.; Kesavan, T.; Vivekanantha, M.; Subadevi, R.; Sivakumar, M.; Lee, C. W.; Gnanamuthu, R. M. Fabrication of Li(Ni-Zn-Mn)O2 layered cathode material for energy conversion and storage performance in lithium-ion batteries. Solid State Sci. 2021, 118, 106630.

[45]

Li, X.; Ma, X. H.; Su, D.; Liu, L.; Chisnell, R.; Ong, S. P.; Chen, H. L.; Toumar, A.; Idrobo, J. C.; Lei, Y. C. et al. Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. Nat. Mater. 2014, 13, 586–592.

[46]

Yao, H. R.; Lv, W. J.; Yuan, X. G.; Guo, Y. J.; Zheng, L. T.; Yang, X. A.; Li, J. X.; Huang, Y. Y.; Huang, Z. G.; Wang, P. F. et al. New insights to build Na+ vacancy disordering for high-performance P2-type layered oxide cathodes. Nano Energy 2022, 97, 107207.

[47]

Wang, Y. S.; Xiao, R. J.; Hu, Y. S.; Avdeev, M.; Chen, L. Q. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954.

[48]

Cheng, C.; Hu, H. L.; Yuan, C.; Xia, X.; Mao, J.; Dai, K. H.; Zhang, L. Precisely modulating the structural stability and redox potential of sodium layered cathodes through the synergetic effect of co-doping strategy. Energy Storage Mater. 2022, 52, 10–18.

[49]

Tang, A. C.; Wan, C. B.; Hu, X. Y.; Ju, X. Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors. Nano Res. 2021, 14, 4063–4072.

[50]

Liang, H. Y.; Zhang, H.; Zhao, L. Y.; Chen, Z. Y.; Huang, C. X.; Zhang, C. L.; Liang, Z.; Wang, Y. Q.; Wang, X.; Li, Q. et al. Layered Fe2(MoO4)3 assemblies with pseudocapacitive properties as advanced materials for high-performance sodium-ion capacitors. Chem. Eng. J. 2022, 427, 131481.

[51]

Shi, W. J.; Li, H. X.; Zhang, D.; Du, F. H.; Zhang, Y. H.; Wang, Z. Y.; Zhang, X. H.; Zhang, P. F. Insights into unrevealing the effects of the monovalent cation substituted tunnel-type cathode for high-performance sodium-ion batteries. Chem. Eng. J. 2023, 477, 146976.

[52]

Sun, Y. R.; Zhou, P. F.; Liu, S. Y.; Zhao, Z. J.; Pan, Y. H.; Shen, X. Y.; Wu, X. Z.; Zhao, J. P.; Weng, J. Y.; Zhou, J. Manipulating Na occupation and constructing protective film of P2-Na0.67Ni0.33Mn0.67O2 as long-term cycle stability cathode for sodium-ion batteries. J. Energy Chem. 2024, 88, 603–611.

[53]

Voronina, N.; Shin, M. Y.; Kim, H. J.; Yaqoob, N.; Guillon, O.; Song, S. H.; Kim, H.; Lim, H. D.; Jung, H. G.; Kim, Y. et al. Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2103939.

[54]

Zhang, R.; Wang, C. Y.; Zou, P. C.; Lin, R. Q.; Ma, L.; Yin, L.; Li, T. Y.; Xu, W. Q.; Jia, H.; Li, Q. Y. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 2022, 610, 67–73.

[55]

Wang, Y.; Zhao, X. D.; Jin, J. T.; Shen, Q. Y.; Hu, Y.; Song, X. B.; Li, H.; Qu, X. H.; Jiao, L. F.; Liu, Y. C. Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc. 2023, 145, 22708–22719.

[56]

Li, Z. Y.; Ma, X. B.; Guo, H.; He, L. F.; Li, Y. Q.; Wei, G. H.; Sun, K.; Chen, D. F. Complementary effect of Ti and Ni incorporation in improving the electrochemical performance of a layered sodium manganese oxide cathode for sodium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 5687–5696.

[57]

Ding, F. X.; Zhao, C. L.; Xiao, D. D.; Rong, X. H.; Wang, H. B.; Li, Y. Q.; Yang, Y.; Lu, Y. X.; Hu, Y. S. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 2022, 144, 8286–8295.

[58]

Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.

[59]

Tang, A. C.; Wan, C. B.; Meng, X. H.; Li, X. C.; Hu, X. Y.; Huang, M. F.; Ju, X. Oxygen vacancies confined in porous Co3V2O8 sheets for durable and high-energy aqueous sodium-ion capacitors. Nano Res. 2022, 15, 5123–5133.

[60]

Niu, J.; Liang, J. J.; Shao, R.; Liu, M. Y.; Dou, M. L.; Li, Z. L.; Huang, Y. Q.; Wang, F. Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 2017, 41, 285–292.

[61]

Long, Y. Q.; Yang, J.; Gao, X.; Xu, X. N.; Fan, W. L.; Yang, J.; Hou, S. F.; Qian, Y. T. Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium-ion capacitors: The case of FeS2− x Se x . ACS Appl. Mater. Interfaces 2018, 10, 10945–10954.

[62]

Lim, E.; Jo, C.; Kim, M. S.; Kim, M. H.; Chun, J.; Kim, H.; Park, J.; Roh, K. C.; Kang, K.; Yoon, S. et al. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core–shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 2016, 26, 3711–3719.

[63]

Ding, J.; Li, Z.; Cui, K.; Boyer, S.; Karpuzov, D.; Mitlin, D. Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 2016, 23, 129–137.

[64]

Bhat, S. S. M.; Babu, B.; Feygenson, M.; Neuefeind, J. C.; Shaijumon, M. M. Nanostructured Na2Ti9O19 for hybrid sodium-ion capacitors with excellent rate capability. ACS Appl. Mater. Interfaces 2018, 10, 437–447.

[65]

Thangavel, R.; Kaliyappan, K.; Kim, D. U.; Sun, X. L.; Lee, Y. S. All-organic sodium hybrid capacitor: A new, high-energy, high-power energy storage system bridging batteries and capacitors. Chem. Mater. 2017, 29, 7122–7130.

[66]

Thangavel, R.; Kaliyappan, K.; Kang, K.; Sun, X. L.; Lee, Y. S. Going beyond lithium hybrid capacitors: Proposing a new high-performing sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon. Adv. Energy Mater. 2016, 6, 1502199.

Nano Research
Pages 8785-8793
Cite this article:
Wang T, Li Y, Chen Z, et al. Entropy-modulated and interlayer-doped transition metal layered oxides enable high-energy-density sodium-ion capacitors. Nano Research, 2024, 17(10): 8785-8793. https://doi.org/10.1007/s12274-024-6640-3
Topics:
Part of a topical collection:

1006

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 20 February 2024
Revised: 19 March 2024
Accepted: 19 March 2024
Published: 13 April 2024
© Tsinghua University Press 2024
Return