AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous S-doped carbon nitride foam with accelerated charge dynamics for synchronous photocatalytic hydrogen production and highly selective oxidation of amines

Yu HeAiping Wu( )Nan WangYing XieChungui TianHonggang Fu( )
Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of the People’s Republic of China), Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

Porous S-doped carbon nitride foam assembled from ultrathin nanosheets with rich nitrogen vacancies was constructed using a molecular self-assembly strategy. The porous S-C3N4−y foam exhibited excellent synchronous photocatalytic H2 production and highly selective benzylamine oxidation activity. The photocatalytic coupling pairing reaction promotes the water splitting by consuming hydrogen peroxide, thereby improving the hydrogen evolution efficiency and achieving the production of high value-added imines.

Abstract

Photocatalytic hydrogen evolution coupled with organic oxidation holds great promise for converting solar energy into high-value-added chemicals, but it is hampered by sluggish charge dynamics and limited redox potential. Herein, a porous S-doped carbon nitride (S-C3N4−y) foam assembled from ultrathin nanosheets with rich nitrogen vacancies was synthesized using a molecular self-assembly strategy. The S dopants and N vacancies synergistically adjusted the band structure, facilitating light absorption and enhancing the oxidation ability. Moreover, the ultrathin nanosheets and porous structure provided more exposed active sites and facilitated mass and charge transfer. Consequently, S-C3N4−y foam exhibited enhanced photocatalytic activities for synchronous hydrogen evolution (4960 μmol/(h·g)) and benzylamine oxidation to N-benzylidenebenzylamine (4885 μmol/(h·g)) with high selectivity of > 99 %, which were approximately 17.6 and 72.9 times higher than those of bulk CN, respectively. The photocatalytic coupling pairing reaction promotes the water splitting by consuming H2O2, thereby improving the hydrogen evolution efficiency and achieving the production of high value-added imines. This study provides an effective route for regulating the morphology and band structure of carbon nitride for synthesizing highly valuable chemicals.

Electronic Supplementary Material

Download File(s)
6641_ESM.pdf (3.2 MB)

References

[1]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[2]

Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.

[3]

Guo, D. Z.; Li, X.; Jiao, Y. Q. ; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co–CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2022, 15, 238–247.

[4]

Qi, Y.; Zhang, F. X. Artificial photosynthesis near the biological limit. Joule 2020, 4, 1364–1366.

[5]

Deng, A. X.; Sun Y.; Gao Z. Q.; Yang S. G.; Liu Y. Z.; He H.; Zhang J. Q.; Liu S. M.; Sun H. Q.; Wang S. B. Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano Energy, 2023, 108, 108228

[6]

Bai, Y.; Li, C.; Liu, L. J.; Yamaguchi, Y.; Bahri, M.; Yang, H. F.; Gardner, A.; Zwijnenburg, M. A.; Browning, N. D.; Cowan, A. J. et al. Photocatalytic overall water splitting under visible light enabled by a particulate conjugated polymer loaded with palladium and iridium. Angew. Chem., Int. Ed. 2022, 61, e202201299.

[7]

Wang, S. H.; Wu, T.; Wu, S. Y.; Guo, J. J.; He, T.; Wu, Y. L.; Yuan, W.; Zhang, Z. Y.; Hua, Y.; Zhao, Y. L. Cobaloxime-integrated covalent organic frameworks for photocatalytic hydrogen evolution coupled with alcohol oxidation. Angew. Chem., Int. Ed. 2023, 62, e202311082.

[8]

Xiao, X. D.; Gao, Y. T.; Zhang, L. P.; Zhang, J. C.; Zhang, Q.; Li, Q.; Bao, H. L.; Zhou, J.; Miao, S.; Chen, N. et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Mater. 2020, 32, 2003082.

[9]

Li, J. H.; Xiong, L. Q.; Luo, B.; Jing, D. W.; Cao, J. M.; Tang, J. W. Hollow carbon sphere-modified graphitic carbon nitride for efficient photocatalytic H2 production. Chem.—Eur. J. 2021, 27, 16879–16888.

[10]

Christopher, P.; Jin, S.; Sivula, K.; Kamat, P. V. Why seeing is not always believing: Common pitfalls in photocatalysis and electrocatalysis. ACS Energy Lett. 2021, 6, 707–709

[11]

Martin, D. J.; Reardon, P. J. T.; Moniz, S. J. A.; Tang, J. W. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 2014, 136, 12568–12571.

[12]

Xu, B. B.; Fu, X. B.; You, X. M.; Zhao, E.; Li, F. F.; Chen, Z. P.; Li, Y. X.; Wang, X. L.; Yao, Y. F. Synergistic promotion of single-atom Co surrounding a PtCo alloy based on a g-C3N4 nanosheet for overall water splitting. ACS Catal. 2022, 12, 6958–6967.

[13]

She, P.; Qin, J. S.; Sheng, J. Y.; Qi, Y. Y.; Rui, H. B.; Zhang, W.; Ge, X.; Lu, G. Y.; Song, X. W.; Rao, H. Dual-functional photocatalysis for cooperative hydrogen evolution and benzylamine oxidation coupling over sandwiched-like Pd@TiO2@ZnIn2S4 nanobox. Small 2022, 18, 2105114.

[14]

Liu, W. X.; Wang, Y. Q.; Huang, H. T.; Wang, J.; He, G. X.; Feng, J. Y.; Yu, T.; Li, Z. S.; Zou, Z. G. Spatial decoupling of redox chemistry for efficient and highly selective amine photoconversion to imines. J. Am. Chem. Soc. 2023, 145, 7181–7189.

[15]

Song, M. Y.; Deng, X. X.; Li, G.; Wang, Q. C.; Peng, H. Y.; Chen, P.; Yin, S. F. Edge- and bridge-engineering-mediated exciton dissociation and charge separation in carbon nitride to boost photocatalytic H2 evolution integrated with selective amine oxidation. J. Mater. Chem. A 2022, 10, 16448–16456.

[16]

Wang, S. D.; Lai, C. L.; Zhang, Y. X.; Bao, S. T.; Lv, K. L.; Wen, L. L. Effective charge and energy transfers within a metal-organic framework for efficient photocatalytic oxidation of amines and sulfides. J. Mater. Chem. A 2022, 10, 20975–20983.

[17]

Huang, Y.; Liu, C. B.; Li, M. Y.; Li, H. Z.; Li, Y. W.; Su, R.; Zhang, B. Photoimmobilized Ni clusters boost photodehydrogenative coupling of amines to imines via enhanced hydrogen evolution kinetics. ACS Catal. 2020, 10, 3904–3910.

[18]

Yang M. Y.; Zhang S. B.; Zhang M.; Li Z. H.; Liu Y. F.; Liao X.; Lu M.; Li S.L.; Lan Y. Q. Three-motif molecular junction type covalent organic frameworks for efficient photocatalytic aerobic oxidation. J. Am. Chem. Soc. 2024, 146, 3396–3404

[19]

Zou, W.; Liu, X. H.; Xue, C.; Zhou, X. T.; Yu, H. Y.; Fan, P.; Ji, H. B. Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines. Appl. Catal. B: Environ. 2021, 285, 119863.

[20]

Wu, K.; Liu, X. Y.; Cheng, P. W.; Huang, Y. L.; Zheng, J.; Xie, M.; Lu, W. G.; Li, D. Linker engineering for reactive oxygen species generation efficiency in ultra-stable nickel-based metal-organic frameworks. J. Am. Chem. Soc. 2023, 145, 18931–18938.

[21]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

[22]

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

[23]

Li, G.; Sun, X. M.; Chen, P.; Song, M. Y.; Zhao, T. X.; Liu, F.; Yin, S. F. Insights into spin polarization regulated exciton dissociation and charge separation of C3N4 for efficient hydrogen evolution and simultaneous benzylamine oxidation. Nano Res. 2023, 16, 8845–8852.

[24]

Wang, W. C.; Du, L. L.; Xia, R. Q.; Liang, R. H.; Zhou, T.; Lee, H. K.; Yan, Z. P.; Luo, H.; Shang, C. X.; Phillips, D. L. et al. In situ protonated-phosphorus interstitial doping induces long-lived shallow charge trapping in porous C3− x N4 photocatalysts for highly efficient H2 generation. Energy Environ. Sci. 2023, 16, 460–472

[25]

Lin, J. K.; Tian, W. J.; Guan, Z. Y.; Zhang, H. Y.; Duan, X. G.; Wang, H.; Sun, H. Q.; Fang, Y. F.; Huang, Y. P.; Wang, S. B. Functional carbon nitride materials in photo-fenton-like catalysis for environmental remediation. Adv. Funct. Mater. 2022, 32, 2201743.

[26]

Yang, S. L.; Wang, Q.; Wang, Q. C.; Li, G.; Zhao, T. X.; Chen, P.; Liu, F.; Yin, S. F. Linkage engineering mediated carriers transfer and surface reaction over carbon nitride for enhanced photocatalytic activity. J. Mater. Chem. A 2021, 9, 21732–21740.

[27]

Wang, N.; Wang, D. X.; Wu, A. P.; Wang, S. Y.; Li, Z. H.; Jin, C. X.; Dong, Y. M.; Kong, F. Y.; Tian, C. G.; Fu, H. G. Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Res. 2023, 16, 3524–3535.

[28]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[29]

Chen, X. J.; Wang, J.; Chai, Y. Q.; Zhang, Z. J.; Zhu, Y. F. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv. Mater. 2021, 33, 2007479

[30]

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

[31]

Xiao, Y. T.; Tian, G. H.; Li, W.; Xie, Y.; Jiang, B. J.; Tian, C. G.; Zhao, D. Y.; Fu, H. G. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 2508–2515

[32]

Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

[33]

Fu, J. W.; Liu, K.; Jiang, K. X.; Li, H. J. W.; An, P. D.; Li, W. Z.; Zhang, N.; Li, H. M.; Xu, X. W.; Zhou, H. Q. et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv. Sci. 2019, 6, 1900796.

[34]

Zhang, X.; Ma, P. J.; Wang, C.; Gan, L. Y.; Chen, X. J.; Zhang, P.; Wang, Y.; Li, H.; Wang, L. H.; Zhou, X. Y. et al. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ. Sci. 2022, 15, 830–842.

[35]

Li, F.; Yue, X. Y.; Zhang, D. N.; Fan, J. J.; Xiang, Q. J. Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2021, 292, 120179.

[36]

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

[37]

Zhang, P.; Tong, Y. W.; Liu, Y.; Vequizo, J. J. M.; Sun, H. W.; Yang, C.; Yamakata, A.; Fan, F. T.; Lin, W.; Wang, X. C. et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew. Chem., Int. Ed. 2020, 59, 16209–16217.

[38]

Wu, B. G.; Zhang, L. P.; Jiang, B. J.; Li, Q.; Tian, C. G.; Xie, Y.; Li, W. Z.; Fu, H. G. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew. Chem., Int. Ed. 2021, 60, 4815–4822.

[39]

Li, Q.; Jiao, Y. Q.; Tang, Y. Q.; Zhou, J.; Wu, B. G.; Jiang, B. J.; Fu, H. G. Shear stress triggers ultrathin-nanosheet carbon nitride assembly for photocatalytic H2O2 production coupled with selective alcohol oxidation. J. Am. Chem. Soc. 2023, 145, 20837–20848.

[40]

Luo, L.; Gong, Z. Y.; Ma, J. N.; Wang, K. R.; Zhu, H. X.; Li, K. Y.; Xiong, L. Q.; Guo, X. W.; Tang, J. W. Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water. Appl. Catal. B: Environ. 2021, 284, 119742.

[41]

Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

[42]

Shen, Q. H.; Li, N. X.; Bibi, R.; Richard, N.; Liu, M. C.; Zhou, J. C.; Jing, D. W. Incorporating nitrogen defects into novel few-layer carbon nitride nanosheets for enhanced photocatalytic H2 production. Appl. Surf. Sci. 2020, 529, 147104.

[43]

Lau, V. W. H.; Yu, V. W. Z.; Ehrat, F.; Botari, T.; Moudrakovski, I.; Simon, T.; Duppel, V.; Medina, E.; Stolarczyk, J. K.; Feldmann, J. et al. Urea-modified carbon nitrides: Enhancing photocatalytic hydrogen evolution by rational defect engineering. Adv. Energy Mater. 2017, 7, 1602251.

[44]

Yang, P. J.; Shang, L.; Zhao, J. H.; Zhang, M.; Shi, H.; Zhang, H. X.; Yang, H. Q. Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light. Appl. Catal. B: Environ. 2021, 297, 120496.

[45]

An, X. Q.; Tang, Q. W.; Lan, H. C.; Liu, H. J.; Yu, X. L.; Qu, J. H.; Lin, H. W.; Ye, J. H. Facilitating molecular activation and proton feeding by dual active sites on polymeric carbon nitride for efficient CO2 photoreduction. Angew. Chem., Int. Ed. 2022, 61, e202212706.

[46]
Wang, K.; Li, Q.; Liu, B. S.; Cheng, B.; Ho, W.; Yu, J. G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B: Environ. 2015 , 176–177, 44–52.
[47]

Wang, H. T.; Jiang, J. Z.; Yu, L. L.; Peng, J. H.; Song, Z.; Xiong, Z. G.; Li, N.; Xiang, K.; Zou, J.; Hsu, J. P. et al. Tailoring advanced N-defective and S-doped g-C3N4 for photocatalytic H2 evolution. Small 2023, 19, 2301116.

[48]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[49]

Wang, Y. Y.; Qu, Y.; Qu, B. H.; Bai, L. L.; Liu, Y.; Yang, Z. D.; Zhang, W.; Jing, L. Q.; Fu, H. G. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 2021, 33, 2105482.

[50]

Li, D.; Zhao, Y. X.; Miao, Y. X.; Zhou, C.; Zhang, L. P.; Wu, L. Z.; Zhang, T. R. Accelerating electron-transfer dynamics by TiO2 immobilized reversible single-atom copper for enhanced artificial photosynthesis of urea. Adv. Mater. 2022, 34, 2207793.

[51]

Zhou, Y. J.; Qi, H. H.; Wu, J.; Huang, H.; Liu, Y.; Kang, Z. H. Amino modified carbon dots with electron sink effect increase interface charge transfer rate of Cu-based electrocatalyst to enhance the CO2 conversion selectivity to C2H4. Adv. Funct. Mater. 2022, 32, 2113335.

[52]

Yu, W. Y.; Hu, C.; Bai, L. Q.; Tian, N.; Zhang, Y. H.; Huang, H. W. Photocatalytic hydrogen peroxide evolution: What is the most effective strategy. Nano Energy 2022, 104, 107906.

[53]

Dai, X. H.; Liu, H.; Du, W. X.; Su, J.; Kong, L. S.; Ni, S. Q.; Zhan, J. H. Biocompatible carbon nitride quantum dots nanozymes with high nitrogen vacancies enhance peroxidase-like activity for broad-spectrum antibacterial. Nano Res. 2023, 16, 7237–7247.

[54]

Zhang, X.; Zhao, X. H.; Zhu, P.; Adler, Z.; Wu, Z. Y.; Liu, Y. Y.; Wang, H. T. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 2022, 13, 2880.

[55]

Ren, P.; Zhang, T.; Jain, N.; Ching, H. Y. V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L. et al. An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the water oxidation reaction (WOR). J. Am. Chem. Soc. 2023, 145, 16584–16596.

[56]

Zhang, Q.; Wang, F. Q.; Wang, R. Y.; Liu, J. L.; Ma, Y. P. X.; Qin, X. R.; Zhong, X. X. Activating one/two-photon excited red fluorescence on carbon dots: Emerging n → π photon transition induced by amino protonation. Adv. Sci. 2023, 10, 2207566.

[57]

Xing, Y. C.; Yao, Z.; Li, W. Y.; Wu, W. T.; Lu, X. Q.; Tian, J.; Li, Z. T.; Hu, H.; Wu, M. B. Fe/Fe3C boosts H2O2 utilization for methane conversion overwhelming O2 generation. Angew. Chem., Int. Ed. 2021, 60, 8889–8895.

Nano Research
Pages 6860-6869
Cite this article:
He Y, Wu A, Wang N, et al. Porous S-doped carbon nitride foam with accelerated charge dynamics for synchronous photocatalytic hydrogen production and highly selective oxidation of amines. Nano Research, 2024, 17(8): 6860-6869. https://doi.org/10.1007/s12274-024-6641-2
Topics:

497

Views

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 17 March 2024
Revised: 18 March 2024
Accepted: 19 March 2024
Published: 25 May 2024
© Tsinghua University Press 2024
Return